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Wi-Fi Router

https://www.amazon.com/WiFi-6-Router-Gigabit-Wireless/dp/B08H8ZLKKK
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Anokiwave 28 GHz Transceiver for 5G Cellular Systems

8 cm

8 cm

256 antenna elements at 28 GHz
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Texas Instruments Millimeter Wave Radar
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U.S. Early Warning Radar in Alaska
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Very Large Array Radio Observatory in New Mexico
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Very Large Array Radio Observatory in New Mexico
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Antennas exhibit transmit-receive reciprocity.
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Electromagnetic waves propagate at the speed of light, c ≈ 3× 108 meters/sec.

• frequency f : how many cycles the wave completes in one second
• period 1/f : the time consumed when completing one cycle
• wavelength λ: the distance traveled when completing one cycle

c︸︷︷︸
meters/sec

= λ︸︷︷︸
meters/cycle

· f︸︷︷︸
cycles/sec

(1)

y(t) = sin(2πft)

a sinusoidal wave

b b bb b b
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2.4 GHz Wi-Fi: frequency f = 2.4 GHz, wavelength λ = 12.5 cm.

5 GHz Wi-Fi: frequency f = 5 GHz, wavelength λ = 6 cm.

b b bb b b

frequency f

time

wavelength λ

space

As frequency f increases, wavelength λ decreases proportionally to ensure c = λ · f .
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5 GHz Wi-Fi: frequency f = 5 GHz, wavelength λ = 6 cm.
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An isotropic antenna is an infinitesimally small point source
that radiates energy in a perfectly spherical fashion.
• don’t truly exist in reality
• but useful tool for studying antennas

Consider a transmitter with an isotropic antenna.

Close to the isotropic antenna, waves appear spherical.

Far away, waves appear planar beyond the Rayleigh distance

Rayleigh distance = 2D2/λ (2)

when received by a real-world antenna whose largest
dimension is D meters.

Also called the “far-field” or “Fraunhofer” distance.

TX
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Let’s consider a communication system where a single-antenna transmitter
communicates with a receiver with two antennas, located in the far-field.

transmitterdata receiver data
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Since we’re in the far-field, a planar wavefront impinges the receive antennas.

plane wave

d
antenna 1 antenna 0b b

When aligned perpendicular to the direction of propagation,
the antennas receive the signals simultaneously.
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What about when antennas are not perpendicular to the direction of propagation?

d
antenna 1 antenna 0

y

b b

θ plane wave

x
from θ

The signals do not impinge all antennas simultaneously.
Signals reaching each antenna travel slightly different distances.
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This extra propagation distance leads to a signal that is slightly delayed.

This leads to a phase difference between signals.

b b bb b b time

signal at antenna 0

Let’s look at how we can quantify this phase difference.
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A wave completes one cycle (2π radians) after propagating λ meters.

The wave number is the rate at which phase changes as a function of distance.

wave number = 2π
λ︸︷︷︸

radians/meter

(3)

y(t) = sin(2πft)

a sinusoidal wave

b b bb b b

λ

wavelength

space

Q: By how much does phase change when traveling λ/2? A: π radians
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Back to our example: Propagating an extra r meters
results in a relative phase shift of

2π
λ︸︷︷︸

radians/meter

· r︸︷︷︸
meters

. (4)

With some simple geometry: r = d sin θ.

How to relate the received signals at each antenna?
Remember ejφ?

y1(t)︸ ︷︷ ︸
signal 1

= y0(t)︸ ︷︷ ︸
signal 0

· exp
(
−j · 2π

λ
· d sin θ

)
︸ ︷︷ ︸

phase shift at antenna 1

Why −j and not +j? Antenna 1 sees a delayed version of
the signal at antenna 0, so phase shift is negative.

When θ < 0, antenna 1 sees the signal ahead of antenna 0.

d
antenna 1 antenna 0

y

b b

θ plane wave

x
from θ
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What if we have a third antenna?

In this 3-element array, we have

r1 = d sin θ, r2 = 2 · d sin θ.

This results in relative phase shifts of

y1(t) = y0(t) · exp
(
−j · 2π

λ
· d sin θ

)
︸ ︷︷ ︸

phase shift at antenna 1

y2(t) = y0(t) · exp
(
−j · 2π

λ
· 2 · d sin θ

)
︸ ︷︷ ︸

phase shift at antenna 2

d
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d

b 2
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We can generalize this to an N -element linear array with uniform spacing d.

d
1 0b b

d

b 2N − 1b

d

b N − 2
b b b

The signal at the i-th antenna can be written as

yi(t) = y0(t) · exp
(
−j · 2π

λ
· i · d sin θ

)
︸ ︷︷ ︸

phase shift at antenna i

. (5)

We can denote the phase shift at the i-th antenna induced by a plane wave from θ as

ai(θ) , exp
(
−j · 2π

λ
· i · d sin θ

)
. (6)
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Collecting these phase shifts into a vector populates its array response vector.

a(θ) ,


a0(θ)
a1(θ)
a2(θ)
...

aN−1(θ)

 =


exp

(
−j · 2π

λ · 0 · d sin θ
)

exp
(
−j · 2π

λ · 1 · d sin θ
)

exp
(
−j · 2π

λ · 2 · d sin θ
)

...
exp

(
−j · 2π

λ · (N − 1) · d sin θ
)

 ∈ CN×1 (7)
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So far, we’ve only looked at uniform linear arrays in 2-D space.
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What about uniform planar arrays in 3-D space?

20



What about arbitrary arrays in 3-D space?
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A unit vector in the direction (θ, φ) can be
decomposed into Cartesian coordinates as

x = sin θ · cos θ (8)
y = cos θ · cosφ (9)
z = sinφ. (10)

From Cartesian coordinates to azimuth and
elevation, we have

θ = arctan
(
x

y

)
(11)

φ = arctan
(

z√
x2 + y2

)
. (12)

Azimuth θ: left/right. Elevation φ: up/down.

x

y

z

φ

θ

(θ, φ)
azimuth-elevation
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Consider an array of N antennas, where the i-th antenna is located at (xi, yi, zi) in 3-D space.

The relative phase shift experienced by the i-th antenna is

ai(θ, φ) = exp
(

j · 2π
λ
· (xi sin θ cosφ+ yi cos θ cosφ+ zi sinφ)

)
. (13)

The array response vector is then

a(θ, φ) =


a0(θ, φ)
a1(θ, φ)

...
aN−1(θ, φ)

 . (14)

This is the general form of the array response for any antenna array.
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Some comments on practical systems:

• Uniform linear arrays and uniform planar arrays are common in practice.
• It is often desirable to use a spacing of d = λ/2 between antenna elements.
• We have been using the antenna 0 as our reference point. In general, it does not matter

which antenna label as “antenna 0”. Likewise, we could instead reference from the origin
(0, 0, 0) of our coordinate system.

• Changing one’s coordinate system will change the expressions but the effective array
response will not change.

• Applying a common phase shift to all elements will change the absolute array response,
but practically we are only concerned with the relative phase difference across elements,
which will be unaffected.
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So...why does this router have multiple antennas? What does it do with them?

https://www.amazon.com/WiFi-6-Router-Gigabit-Wireless/dp/B08H8ZLKKK
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5G cellular systems also use multiple antennas, but often many more than Wi-Fi.

They are used to electronically steer signals toward users.

8 cm

8 cm

256 antenna elements at 28 GHz

How to steer signals in a particular direction? → beamforming

UE: user equipment, BS: base station.
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What is beamforming?
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Let yi(t) be the signal striking the i-th antenna. The received signal after beamforming is

N−1∑
i=0

wi · yi(t) =
N−1∑
i=0

wi · ai(θ, φ) · y0(t)︸ ︷︷ ︸
yi(t)

= y0(t) ·
N−1∑
i=0

wi · ai(θ, φ)

= y0(t) ·wTa(θ, φ)
= y0(t) · g(θ, φ).
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Beamforming with multiple antennas can increase the strength of the received signal.
This can improve the signal quality and thus increase communication data rate.
In communications, we’re often interested in the magnitude of this gain, |g(θ, φ)|.

...but how do we design the beamforming weights to increase |g(θ, φ)|?

|g(θ, φ)| =
∣∣wTa(θ, φ)

∣∣ =

∣∣∣∣∣
N−1∑
i=0

wi · ai(θ, φ)

∣∣∣∣∣
27



Let’s look at beamforming with an 8-element uniform linear array.
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What if we choose w = 1 (i.e., wi = 1 for all i)?
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What if we choose w = conj(a(30◦))?
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What if we choose w = conj(a(−30◦))?
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To steer our beam toward some (θ, φ), we can use conjugate beamforming weights

w = conj(a(θ, φ)) ⇐⇒ wi = ai(θ, φ)∗
. (15)

This will “counteract” the phase shifts induced by the wave as it strikes the array.

yi(t) = wi︸︷︷︸
weight

· ai(θ, φ)︸ ︷︷ ︸
response

· y0(t) (16)

= ai(θ, φ)∗︸ ︷︷ ︸
weight

· ai(θ, φ)︸ ︷︷ ︸
response

· y0(t) (17)

= |ai(θ, φ)|2︸ ︷︷ ︸
=1

· y0(t) (18)

= y0(t). (19)

Conjugate beamforming is also referred to as matched filter beamforming.
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The beamformed output signal under conjugate beamforming is then

N−1∑
i=0

wi · yi(t) =
N−1∑
i=0

wi · ai(θ, φ) · y0(t)︸ ︷︷ ︸
yi(t)

(20)

= y0(t) ·
N−1∑
i=0

wi · ai(θ, φ) (21)

= y0(t) ·
N−1∑
i=0

ai(θ, φ)∗ · ai(θ, φ) (22)

= y0(t) ·
N−1∑
i=0

1 (23)

= y0(t) ·N. (24)

Conjugate beamforming with N antennas increases the signal in magnitude by a factor of N
and in power by a factor of N2, compared to receiving with a single antenna.
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Thank you!

Please feel free to reach out to me with any questions at
ipr@utexas.edu
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