Wireless Communication with Multiple Antennas

Fundamentals of Antenna Arrays

Ian P. Roberts, Ph.D. Candidate
Wireless Networking and Communications Group
Department of Electrical and Computer Engineering
University of Texas at Austin
ipr@utexas.edu
April 7, 2023

Wi-Fi Router

https://www.amazon.com/WiFi-6-Router-Gigabit-Wireless/dp/B08H8ZLKKK

Anokiwave 28 GHz Transceiver for 5G Cellular Systems

Texas Instruments Millimeter Wave Radar

U.S. Early Warning Radar in Alaska

Very Large Array Radio Observatory in New Mexico

Very Large Array Radio Observatory in New Mexico

Very Large Array Radio Observatory in New Mexico

antenna

Antennas exhibit transmit-receive reciprocity.

Antennas exhibit transmit-receive reciprocity.

Electromagnetic waves propagate at the speed of light, $\mathrm{c} \approx 3 \times 10^{8}$ meters $/ \mathrm{sec}$.

Electromagnetic waves propagate at the speed of light, $\mathrm{c} \approx 3 \times 10^{8}$ meters $/ \mathrm{sec}$.

- frequency f : how many cycles the wave completes in one second

Electromagnetic waves propagate at the speed of light, $\mathrm{c} \approx 3 \times 10^{8}$ meters $/ \mathrm{sec}$.

- frequency f : how many cycles the wave completes in one second
- period $1 / f$: the time consumed when completing one cycle

Electromagnetic waves propagate at the speed of light, $\mathrm{c} \approx 3 \times 10^{8}$ meters $/ \mathrm{sec}$.

- frequency f : how many cycles the wave completes in one second
- period $1 / f$: the time consumed when completing one cycle
- wavelength λ : the distance traveled when completing one cycle

Electromagnetic waves propagate at the speed of light, $\mathrm{c} \approx 3 \times 10^{8}$ meters $/ \mathrm{sec}$.

- frequency f : how many cycles the wave completes in one second
- period $1 / f$: the time consumed when completing one cycle
- wavelength λ : the distance traveled when completing one cycle

Electromagnetic waves propagate at the speed of light, $\mathrm{c} \approx 3 \times 10^{8}$ meters $/ \mathrm{sec}$.

- frequency f : how many cycles the wave completes in one second
- period $1 / f$: the time consumed when completing one cycle
- wavelength λ : the distance traveled when completing one cycle

$$
\begin{equation*}
\underbrace{\mathrm{c}}_{\text {meters } / \text { sec }}=\underbrace{\lambda}_{\text {meters/cycle }} \cdot \underbrace{f}_{\text {cycles } / \mathrm{sec}} \tag{1}
\end{equation*}
$$

2.4 GHz Wi-Fi: frequency $f=2.4 \mathrm{GHz}$, wavelength $\lambda=12.5 \mathrm{~cm}$.

5 GHz Wi-Fi: frequency $f=5 \mathrm{GHz}$, wavelength $\lambda=6 \mathrm{~cm}$.

[^0]2.4 GHz Wi-Fi: frequency $f=2.4 \mathrm{GHz}$, wavelength $\lambda=12.5 \mathrm{~cm}$.

5 GHz Wi-Fi: frequency $f=5 \mathrm{GHz}$, wavelength $\lambda=6 \mathrm{~cm}$.

[^1]An isotropic antenna is an infinitesimally small point source that radiates energy in a perfectly spherical fashion.

- don't truly exist in reality
- but useful tool for studying antennas

Consider a transmitter with an isotropic antenna.

An isotropic antenna is an infinitesimally small point source that radiates energy in a perfectly spherical fashion.

- don't truly exist in reality
- but useful tool for studying antennas

Consider a transmitter with an isotropic antenna.

An isotropic antenna is an infinitesimally small point source that radiates energy in a perfectly spherical fashion.

- don't truly exist in reality
- but useful tool for studying antennas

Consider a transmitter with an isotropic antenna.

An isotropic antenna is an infinitesimally small point source that radiates energy in a perfectly spherical fashion.

- don't truly exist in reality
- but useful tool for studying antennas

Consider a transmitter with an isotropic antenna.

An isotropic antenna is an infinitesimally small point source that radiates energy in a perfectly spherical fashion.

- don't truly exist in reality
- but useful tool for studying antennas

Consider a transmitter with an isotropic antenna.

An isotropic antenna is an infinitesimally small point source that radiates energy in a perfectly spherical fashion.

- don't truly exist in reality
- but useful tool for studying antennas

Consider a transmitter with an isotropic antenna.

An isotropic antenna is an infinitesimally small point source that radiates energy in a perfectly spherical fashion.

- don't truly exist in reality
- but useful tool for studying antennas

Consider a transmitter with an isotropic antenna.

An isotropic antenna is an infinitesimally small point source that radiates energy in a perfectly spherical fashion.

- don't truly exist in reality
- but useful tool for studying antennas

Consider a transmitter with an isotropic antenna.

An isotropic antenna is an infinitesimally small point source that radiates energy in a perfectly spherical fashion.

- don't truly exist in reality
- but useful tool for studying antennas

Consider a transmitter with an isotropic antenna.

An isotropic antenna is an infinitesimally small point source that radiates energy in a perfectly spherical fashion.

- don't truly exist in reality
- but useful tool for studying antennas

Consider a transmitter with an isotropic antenna.

An isotropic antenna is an infinitesimally small point source that radiates energy in a perfectly spherical fashion.

- don't truly exist in reality
- but useful tool for studying antennas

Consider a transmitter with an isotropic antenna.

An isotropic antenna is an infinitesimally small point source that radiates energy in a perfectly spherical fashion.

- don't truly exist in reality
- but useful tool for studying antennas

Consider a transmitter with an isotropic antenna.

An isotropic antenna is an infinitesimally small point source that radiates energy in a perfectly spherical fashion.

- don't truly exist in reality
- but useful tool for studying antennas

Consider a transmitter with an isotropic antenna.

An isotropic antenna is an infinitesimally small point source that radiates energy in a perfectly spherical fashion.

- don't truly exist in reality
- but useful tool for studying antennas

Consider a transmitter with an isotropic antenna.

An isotropic antenna is an infinitesimally small point source that radiates energy in a perfectly spherical fashion.

- don't truly exist in reality
- but useful tool for studying antennas

Consider a transmitter with an isotropic antenna.
Close to the isotropic antenna, waves appear spherical.

An isotropic antenna is an infinitesimally small point source that radiates energy in a perfectly spherical fashion.

- don't truly exist in reality
- but useful tool for studying antennas

Consider a transmitter with an isotropic antenna.
Close to the isotropic antenna, waves appear spherical.

An isotropic antenna is an infinitesimally small point source that radiates energy in a perfectly spherical fashion.

- don't truly exist in reality
- but useful tool for studying antennas

Consider a transmitter with an isotropic antenna.
Close to the isotropic antenna, waves appear spherical.

An isotropic antenna is an infinitesimally small point source that radiates energy in a perfectly spherical fashion.

- don't truly exist in reality
planar wavefronts
- but useful tool for studying antennas

Consider a transmitter with an isotropic antenna.
spherical wavefronts
Close to the isotropic antenna, waves appear spherical.

An isotropic antenna is an infinitesimally small point source that radiates energy in a perfectly spherical fashion.

- don't truly exist in reality
- but useful tool for studying antennas

Consider a transmitter with an isotropic antenna.
Close to the isotropic antenna, waves appear spherical.
Far away, waves appear planar beyond the Rayleigh distance

$$
\begin{equation*}
\text { Rayleigh distance }=2 D^{2} / \lambda \tag{2}
\end{equation*}
$$

when received by a real-world antenna whose largest dimension is D meters.

planar wavefronts
far-field boundary
spherical wavefronts

An isotropic antenna is an infinitesimally small point source that radiates energy in a perfectly spherical fashion.

- don't truly exist in reality
- but useful tool for studying antennas

Consider a transmitter with an isotropic antenna.
Close to the isotropic antenna, waves appear spherical.
Far away, waves appear planar beyond the Rayleigh distance

$$
\begin{equation*}
\text { Rayleigh distance }=2 D^{2} / \lambda \tag{2}
\end{equation*}
$$

when received by a real-world antenna whose largest dimension is D meters.

Also called the "far-field" or "Fraunhofer" distance.

planar wavefronts
far-field boundary
spherical wavefronts

Let's consider a communication system where a single-antenna transmitter communicates with a receiver with two antennas, located in the far-field.

Since we're in the far-field, a planar wavefront impinges the receive antennas.
plane wave

When aligned perpendicular to the direction of propagation, the antennas receive the signals simultaneously.

Since we're in the far-field, a planar wavefront impinges the receive antennas.

When aligned perpendicular to the direction of propagation, the antennas receive the signals simultaneously.

Since we're in the far-field, a planar wavefront impinges the receive antennas.

When aligned perpendicular to the direction of propagation, the antennas receive the signals simultaneously.

Since we're in the far-field, a planar wavefront impinges the receive antennas.

When aligned perpendicular to the direction of propagation, the antennas receive the signals simultaneously.

Since we're in the far-field, a planar wavefront impinges the receive antennas.

When aligned perpendicular to the direction of propagation, the antennas receive the signals simultaneously.

Since we're in the far-field, a planar wavefront impinges the receive antennas.

When aligned perpendicular to the direction of propagation, the antennas receive the signals simultaneously.

What about when antennas are not perpendicular to the direction of propagation?

What about when antennas are not perpendicular to the direction of propagation?

What about when antennas are not perpendicular to the direction of propagation?

What about when antennas are not perpendicular to the direction of propagation?

What about when antennas are not perpendicular to the direction of propagation?

The signals do not impinge all antennas simultaneously.

What about when antennas are not perpendicular to the direction of propagation?

The signals do not impinge all antennas simultaneously. Signals reaching each antenna travel slightly different distances.

This extra propagation distance leads to a signal that is slightly delayed.

signal at antenna 0

This extra propagation distance leads to a signal that is slightly delayed.

This extra propagation distance leads to a signal that is slightly delayed.
This leads to a phase difference between signals.

This extra propagation distance leads to a signal that is slightly delayed.
This leads to a phase difference between signals.

Let's look at how we can quantify this phase difference.

A wave completes one cycle (2π radians) after propagating λ meters.

A wave completes one cycle (2π radians) after propagating λ meters.
The wave number is the rate at which phase changes as a function of distance.

$$
\begin{equation*}
\text { wave number }=\underbrace{\frac{2 \pi}{\lambda}}_{\text {radians } / \text { meter }} \tag{3}
\end{equation*}
$$

A wave completes one cycle (2π radians) after propagating λ meters. The wave number is the rate at which phase changes as a function of distance.

$$
\begin{equation*}
\text { wave number }=\underbrace{\frac{2 \pi}{\lambda}}_{\text {radians } / \text { meter }} \tag{3}
\end{equation*}
$$

Q: By how much does phase change when traveling $\lambda / 2$?

A wave completes one cycle (2π radians) after propagating λ meters. The wave number is the rate at which phase changes as a function of distance.

$$
\begin{equation*}
\text { wave number }=\underbrace{\frac{2 \pi}{\lambda}}_{\text {radians } / \text { meter }} \tag{3}
\end{equation*}
$$

Q: By how much does phase change when traveling $\lambda / 2$? $\mathrm{A}: \pi$ radians

Back to our example: Propagating an extra r meters results in a relative phase shift of

$$
\begin{equation*}
\underbrace{\frac{2 \pi}{\lambda}}_{\text {radians/meter }} \cdot \underbrace{r}_{\text {meters }} \tag{4}
\end{equation*}
$$

antenna 1

d \qquad $\stackrel{\bullet}{-}$

Back to our example: Propagating an extra r meters results in a relative phase shift of

$$
\begin{equation*}
\underbrace{\frac{2 \pi}{\lambda}}_{\text {radians/meter }} \cdot \underbrace{r}_{\text {meters }} \tag{4}
\end{equation*}
$$

antenna 1 \qquad d \qquad antenna 0

Back to our example: Propagating an extra r meters

results in a relative phase shift of

Back to our example: Propagating an extra r meters results in a relative phase shift of

$$
\begin{equation*}
\underbrace{\frac{2 \pi}{\lambda}}_{\text {radians/meter }} \cdot \underbrace{r}_{\text {meters }} \tag{4}
\end{equation*}
$$

Back to our example: Propagating an extra r meters

results in a relative phase shift of

Back to our example: Propagating an extra r meters

results in a relative phase shift of

Back to our example: Propagating an extra r meters

results in a relative phase shift of

Back to our example: Propagating an extra r meters

results in a relative phase shift of

Back to our example: Propagating an extra r meters

results in a relative phase shift of

Back to our example: Propagating an extra r meters results in a relative phase shift of

$$
\begin{equation*}
\underbrace{\frac{2 \pi}{\lambda}}_{\text {radians/meter }} \cdot \underbrace{r}_{\text {meters }} \tag{4}
\end{equation*}
$$

Back to our example: Propagating an extra r meters results in a relative phase shift of

$$
\begin{equation*}
\underbrace{\frac{2 \pi}{\lambda}}_{\text {radians/meter }} \cdot \underbrace{r}_{\text {meters }} \tag{4}
\end{equation*}
$$

Back to our example: Propagating an extra r meters results in a relative phase shift of

$$
\begin{equation*}
\underbrace{\frac{2 \pi}{\lambda}}_{\text {radians/meter }} \cdot \underbrace{r}_{\text {meters }} \tag{4}
\end{equation*}
$$

Back to our example: Propagating an extra r meters results in a relative phase shift of

$$
\underbrace{\frac{2 \pi}{\lambda}}_{\text {radians/meter }} \cdot \underbrace{r}_{\text {meters }}
$$

(4)

With some simple geometry: $r=d \sin \theta$.
How to relate the received signals at each antenna? Remember $\mathrm{e}^{\mathrm{j} \phi}$?

$$
\underbrace{y_{1}(t)}_{\text {signal } 1}=\underbrace{y_{0}(t)}_{\text {signal } 0} \cdot \underbrace{\exp \left(-\mathrm{j} \cdot \frac{2 \pi}{\lambda} \cdot d \sin \theta\right)}_{\text {phase shift at antenna } 1}
$$

Why -j and not +j ? Antenna 1 sees a delayed version of the signal at antenna 0 , so phase shift is negative.

Back to our example: Propagating an extra r meters results in a relative phase shift of

$$
\underbrace{\frac{2 \pi}{\lambda}}_{\text {radians/meter }} \cdot \underbrace{r}_{\text {meters }}
$$

(4)

With some simple geometry: $r=d \sin \theta$.
How to relate the received signals at each antenna? Remember $\mathrm{e}^{\mathrm{j} \phi}$?

$$
\underbrace{y_{1}(t)}_{\text {signal } 1}=\underbrace{y_{0}(t)}_{\text {signal } 0} \cdot \underbrace{\exp \left(-\mathrm{j} \cdot \frac{2 \pi}{\lambda} \cdot d \sin \theta\right)}_{\text {phase shift at antenna } 1}
$$

Why -j and not +j ? Antenna 1 sees a delayed version of the signal at antenna 0 , so phase shift is negative.

When $\theta<0$, antenna 1 sees the signal ahead of antenna 0 .

What if we have a third antenna?
In this 3-element array, we have

$$
r_{1}=d \sin \theta, \quad r_{2}=2 \cdot d \sin \theta .
$$

What if we have a third antenna?

In this 3-element array, we have

$$
r_{1}=d \sin \theta, \quad r_{2}=2 \cdot d \sin \theta .
$$

This results in relative phase shifts of

$$
y_{1}(t)=y_{0}(t) \cdot \underbrace{\exp \left(-\mathrm{j} \cdot \frac{2 \pi}{\lambda} \cdot d \sin \theta\right)}_{\text {phase shift at antenna } 1}
$$

What if we have a third antenna?
In this 3-element array, we have

$$
r_{1}=d \sin \theta, \quad r_{2}=2 \cdot d \sin \theta .
$$

This results in relative phase shifts of

$$
\begin{aligned}
& y_{1}(t)=y_{0}(t) \cdot \underbrace{\exp \left(-\mathrm{j} \cdot \frac{2 \pi}{\lambda} \cdot d \sin \theta\right)}_{\text {phase shift at antenna } 1} \\
& y_{2}(t)=y_{0}(t) \cdot \underbrace{\exp \left(-\mathrm{j} \cdot \frac{2 \pi}{\lambda} \cdot 2 \cdot d \sin \theta\right)}_{\text {phase shift at antenna } 2}
\end{aligned}
$$

We can generalize this to an N-element linear array with uniform spacing d.

The signal at the i-th antenna can be written as

$$
\begin{equation*}
y_{i}(t)=y_{0}(t) \cdot \underbrace{\exp \left(-\mathrm{j} \cdot \frac{2 \pi}{\lambda} \cdot i \cdot d \sin \theta\right)}_{\text {phase shift at antenna } i} . \tag{5}
\end{equation*}
$$

We can denote the phase shift at the i-th antenna induced by a plane wave from θ as

$$
\begin{equation*}
a_{i}(\theta) \triangleq \exp \left(-\mathrm{j} \cdot \frac{2 \pi}{\lambda} \cdot i \cdot d \sin \theta\right) \tag{6}
\end{equation*}
$$

Collecting these phase shifts into a vector populates its array response vector.

$$
\mathbf{a}(\theta) \triangleq\left[\begin{array}{c}
a_{0}(\theta) \tag{7}\\
a_{1}(\theta) \\
a_{2}(\theta) \\
\vdots \\
a_{N-1}(\theta)
\end{array}\right]=\left[\begin{array}{c}
\exp \left(-\mathrm{j} \cdot \frac{2 \pi}{\lambda} \cdot 0 \cdot d \sin \theta\right) \\
\exp \left(-\mathrm{j} \cdot \frac{2 \pi}{\lambda} \cdot 1 \cdot d \sin \theta\right) \\
\exp \left(-\mathrm{j} \cdot \frac{2 \pi}{\lambda} \cdot 2 \cdot d \sin \theta\right) \\
\vdots \\
\exp \left(-\mathrm{j} \cdot \frac{2 \pi}{\lambda} \cdot(N-1) \cdot d \sin \theta\right)
\end{array}\right] \in \mathbb{C}^{N \times 1}
$$

So far, we've only looked at uniform linear arrays in 2-D space.

What about uniform planar arrays in 3-D space?

What about arbitrary arrays in 3-D space?

A unit vector in the direction (θ, ϕ) can be decomposed into Cartesian coordinates as

$$
\begin{align*}
x & =\sin \theta \cdot \cos \theta \tag{8}\\
y & =\cos \theta \cdot \cos \phi \tag{9}\\
z & =\sin \phi . \tag{10}
\end{align*}
$$

From Cartesian coordinates to azimuth and elevation, we have

$$
\begin{align*}
& \theta=\arctan \left(\frac{x}{y}\right) \tag{11}\\
& \phi=\arctan \left(\frac{z}{\sqrt{x^{2}+y^{2}}}\right) \tag{12}
\end{align*}
$$

Consider an array of N antennas, where the i-th antenna is located at $\left(x_{i}, y_{i}, z_{i}\right)$ in 3-D space.

The relative phase shift experienced by the i-th antenna is

$$
\begin{equation*}
a_{i}(\theta, \phi)=\exp \left(\mathrm{j} \cdot \frac{2 \pi}{\lambda} \cdot\left(x_{i} \sin \theta \cos \phi+y_{i} \cos \theta \cos \phi+z_{i} \sin \phi\right)\right) \tag{13}
\end{equation*}
$$

The array response vector is then

$$
\mathbf{a}(\theta, \phi)=\left[\begin{array}{c}
a_{0}(\theta, \phi) \tag{14}\\
a_{1}(\theta, \phi) \\
\vdots \\
a_{N-1}(\theta, \phi)
\end{array}\right]
$$

This is the general form of the array response for any antenna array.

Some comments on practical systems:

Some comments on practical systems:

- Uniform linear arrays and uniform planar arrays are common in practice.

Some comments on practical systems:

- Uniform linear arrays and uniform planar arrays are common in practice.
- It is often desirable to use a spacing of $d=\lambda / 2$ between antenna elements.

Some comments on practical systems:

- Uniform linear arrays and uniform planar arrays are common in practice.
- It is often desirable to use a spacing of $d=\lambda / 2$ between antenna elements.
- We have been using the antenna 0 as our reference point. In general, it does not matter which antenna label as "antenna 0 ". Likewise, we could instead reference from the origin $(0,0,0)$ of our coordinate system.

Some comments on practical systems:

- Uniform linear arrays and uniform planar arrays are common in practice.
- It is often desirable to use a spacing of $d=\lambda / 2$ between antenna elements.
- We have been using the antenna 0 as our reference point. In general, it does not matter which antenna label as "antenna 0 ". Likewise, we could instead reference from the origin $(0,0,0)$ of our coordinate system.
- Changing one's coordinate system will change the expressions but the effective array response will not change.

Some comments on practical systems:

- Uniform linear arrays and uniform planar arrays are common in practice.
- It is often desirable to use a spacing of $d=\lambda / 2$ between antenna elements.
- We have been using the antenna 0 as our reference point. In general, it does not matter which antenna label as "antenna 0 ". Likewise, we could instead reference from the origin $(0,0,0)$ of our coordinate system.
- Changing one's coordinate system will change the expressions but the effective array response will not change.
- Applying a common phase shift to all elements will change the absolute array response, but practically we are only concerned with the relative phase difference across elements, which will be unaffected.

So...why does this router have multiple antennas? What does it do with them?

[^2]So...why does this router have multiple antennas? What does it do with them?

Stronger Coverage You Can Count On

4 high-gain antennas equipped with
Beamforming technology provides stronger,
more reliable coverage.

https://www.amazon.com/WiFi-6-Router-Gigabit-Wireless/dp/B08H8ZLKKK

5G cellular systems also use multiple antennas, but often many more than Wi-Fi.

UE: user equipment, BS: base station.

5G cellular systems also use multiple antennas, but often many more than Wi-Fi.

UE: user equipment, BS: base station.

5G cellular systems also use multiple antennas, but often many more than $\mathrm{Wi}-\mathrm{Fi}$. They are used to electronically steer signals toward users.

UE: user equipment, BS: base station.

5G cellular systems also use multiple antennas, but often many more than $\mathrm{Wi}-\mathrm{Fi}$. They are used to electronically steer signals toward users.

How to steer signals in a particular direction? \rightarrow beamforming

[^3]What is beamforming?

What is beamforming?

Let $y_{i}(t)$ be the signal striking the i-th antenna. The received signal after beamforming is

$$
\sum_{i=0}^{N-1} w_{i} \cdot y_{i}(t)=\sum_{i=0}^{N-1} w_{i} \cdot \underbrace{a_{i}(\theta, \phi) \cdot y_{0}(t)}_{y_{i}(t)}
$$

Let $y_{i}(t)$ be the signal striking the i-th antenna. The received signal after beamforming is

$$
\begin{aligned}
\sum_{i=0}^{N-1} w_{i} \cdot y_{i}(t) & =\sum_{i=0}^{N-1} w_{i} \cdot \underbrace{a_{i}(\theta, \phi) \cdot y_{0}(t)}_{y_{i}(t)} \\
& =y_{0}(t) \cdot \sum_{i=0}^{N-1} w_{i} \cdot a_{i}(\theta, \phi)
\end{aligned}
$$

Let $y_{i}(t)$ be the signal striking the i-th antenna. The received signal after beamforming is

$$
\begin{aligned}
\sum_{i=0}^{N-1} w_{i} \cdot y_{i}(t) & =\sum_{i=0}^{N-1} w_{i} \cdot \underbrace{a_{i}(\theta, \phi) \cdot y_{0}(t)}_{y_{i}(t)} \\
& =y_{0}(t) \cdot \sum_{i=0}^{N-1} w_{i} \cdot a_{i}(\theta, \phi) \\
& =y_{0}(t) \cdot \mathbf{w}^{\mathrm{T}} \mathbf{a}(\theta, \phi)
\end{aligned}
$$

Let $y_{i}(t)$ be the signal striking the i-th antenna. The received signal after beamforming is

$$
\begin{aligned}
\sum_{i=0}^{N-1} w_{i} \cdot y_{i}(t) & =\sum_{i=0}^{N-1} w_{i} \cdot \underbrace{a_{i}(\theta, \phi) \cdot y_{0}(t)}_{y_{i}(t)} \\
& =y_{0}(t) \cdot \sum_{i=0}^{N-1} w_{i} \cdot a_{i}(\theta, \phi) \\
& =y_{0}(t) \cdot \mathbf{w}^{\mathrm{T}} \mathbf{a}(\theta, \phi) \\
& =y_{0}(t) \cdot g(\theta, \phi)
\end{aligned}
$$

Let $y_{i}(t)$ be the signal striking the i-th antenna. The received signal after beamforming is

$$
\begin{aligned}
\sum_{i=0}^{N-1} w_{i} \cdot y_{i}(t) & =\sum_{i=0}^{N-1} w_{i} \cdot \underbrace{a_{i}(\theta, \phi) \cdot y_{0}(t)}_{y_{i}(t)} \\
& =y_{0}(t) \cdot \sum_{i=0}^{N-1} w_{i} \cdot a_{i}(\theta, \phi) \\
& =y_{0}(t) \cdot \mathbf{w}^{\mathrm{T}} \mathbf{a}(\theta, \phi) \\
& =y_{0}(t) \cdot g(\theta, \phi)
\end{aligned}
$$

Beamforming with multiple antennas can increase the strength of the received signal.

Let $y_{i}(t)$ be the signal striking the i-th antenna. The received signal after beamforming is

$$
\begin{aligned}
\sum_{i=0}^{N-1} w_{i} \cdot y_{i}(t) & =\sum_{i=0}^{N-1} w_{i} \cdot \underbrace{a_{i}(\theta, \phi) \cdot y_{0}(t)}_{y_{i}(t)} \\
& =y_{0}(t) \cdot \sum_{i=0}^{N-1} w_{i} \cdot a_{i}(\theta, \phi) \\
& =y_{0}(t) \cdot \mathbf{w}^{\mathrm{T}} \mathbf{a}(\theta, \phi) \\
& =y_{0}(t) \cdot g(\theta, \phi)
\end{aligned}
$$

Beamforming with multiple antennas can increase the strength of the received signal. This can improve the signal quality and thus increase communication data rate.

Let $y_{i}(t)$ be the signal striking the i-th antenna. The received signal after beamforming is

$$
\begin{aligned}
\sum_{i=0}^{N-1} w_{i} \cdot y_{i}(t) & =\sum_{i=0}^{N-1} w_{i} \cdot \underbrace{a_{i}(\theta, \phi) \cdot y_{0}(t)}_{y_{i}(t)} \\
& =y_{0}(t) \cdot \sum_{i=0}^{N-1} w_{i} \cdot a_{i}(\theta, \phi) \\
& =y_{0}(t) \cdot \mathbf{w}^{\mathrm{T}} \mathbf{a}(\theta, \phi) \\
& =y_{0}(t) \cdot g(\theta, \phi)
\end{aligned}
$$

Beamforming with multiple antennas can increase the strength of the received signal. This can improve the signal quality and thus increase communication data rate. In communications, we're often interested in the magnitude of this gain, $|g(\theta, \phi)|$.

Let $y_{i}(t)$ be the signal striking the i-th antenna. The received signal after beamforming is

$$
\begin{aligned}
\sum_{i=0}^{N-1} w_{i} \cdot y_{i}(t) & =\sum_{i=0}^{N-1} w_{i} \cdot \underbrace{a_{i}(\theta, \phi) \cdot y_{0}(t)}_{y_{i}(t)} \\
& =y_{0}(t) \cdot \sum_{i=0}^{N-1} w_{i} \cdot a_{i}(\theta, \phi) \\
& =y_{0}(t) \cdot \mathbf{w}^{\mathrm{T}} \mathbf{a}(\theta, \phi) \\
& =y_{0}(t) \cdot g(\theta, \phi)
\end{aligned}
$$

Beamforming with multiple antennas can increase the strength of the received signal. This can improve the signal quality and thus increase communication data rate. In communications, we're often interested in the magnitude of this gain, $|g(\theta, \phi)|$.
...but how do we design the beamforming weights to increase $|g(\theta, \phi)|$?

$$
|g(\theta, \phi)|=\left|\mathbf{w}^{\mathrm{T}} \mathbf{a}(\theta, \phi)\right|=\left|\sum_{i=0}^{N-1} w_{i} \cdot a_{i}(\theta, \phi)\right|
$$

Let's look at beamforming with an 8-element uniform linear array.

What if we choose $\mathbf{w}=\mathbf{1}$ (i.e., $w_{i}=1$ for all i)?

What if we choose $\mathbf{w}=\mathbf{1}$ (i.e., $w_{i}=1$ for all i)?

What if we choose $\mathbf{w}=\mathbf{1}$ (i.e., $w_{i}=1$ for all i)?

What if we choose $\mathbf{w}=\operatorname{conj}\left(\mathbf{a}\left(30^{\circ}\right)\right)$?

What if we choose $\mathbf{w}=\operatorname{conj}\left(\mathbf{a}\left(-30^{\circ}\right)\right)$?

To steer our beam toward some (θ, ϕ), we can use conjugate beamforming weights

$$
\begin{equation*}
\mathbf{w}=\operatorname{conj}(\mathbf{a}(\theta, \phi)) \Longleftrightarrow w_{i}=a_{i}(\theta, \phi)^{*} \tag{15}
\end{equation*}
$$

Conjugate beamforming is also referred to as matched filter beamforming.

To steer our beam toward some (θ, ϕ), we can use conjugate beamforming weights

$$
\begin{equation*}
\mathbf{w}=\operatorname{conj}(\mathbf{a}(\theta, \phi)) \Longleftrightarrow w_{i}=a_{i}(\theta, \phi)^{*} \tag{15}
\end{equation*}
$$

This will "counteract" the phase shifts induced by the wave as it strikes the array.

$$
\begin{align*}
y_{i}(t) & =\underbrace{w_{i}}_{\text {weight }} \cdot \underbrace{a_{i}(\theta, \phi)}_{\text {response }} \cdot y_{0}(t) \tag{16}\\
& =\underbrace{a_{i}(\theta, \phi)^{*}}_{\text {weight }} \cdot \underbrace{a_{i}(\theta, \phi)}_{\text {response }} \cdot y_{0}(t) \tag{17}\\
& =\underbrace{\left|a_{i}(\theta, \phi)\right|^{2}}_{=1} \cdot y_{0}(t) \tag{18}\\
& =y_{0}(t) . \tag{19}
\end{align*}
$$

[^4]The beamformed output signal under conjugate beamforming is then

$$
\begin{align*}
\sum_{i=0}^{N-1} w_{i} \cdot y_{i}(t) & =\sum_{i=0}^{N-1} w_{i} \cdot \underbrace{a_{i}(\theta, \phi) \cdot y_{0}(t)}_{y_{i}(t)} \tag{20}\\
& =y_{0}(t) \cdot \sum_{i=0}^{N-1} w_{i} \cdot a_{i}(\theta, \phi) \tag{21}\\
& =y_{0}(t) \cdot \sum_{i=0}^{N-1} a_{i}(\theta, \phi)^{*} \cdot a_{i}(\theta, \phi) \tag{22}\\
& =y_{0}(t) \cdot \sum_{i=0}^{N-1} 1 \tag{23}\\
& =y_{0}(t) \cdot N \tag{24}
\end{align*}
$$

Conjugate beamforming with N antennas increases the signal in magnitude by a factor of N and in power by a factor of N^{2}, compared to receiving with a single antenna.

Thank you!
Please feel free to reach out to me with any questions at ipr@utexas.edu

[^0]: As frequency f increases, wavelength λ decreases proportionally to ensure $\mathrm{c}=\lambda \cdot f$.

[^1]: As frequency f increases, wavelength λ decreases proportionally to ensure $\mathrm{c}=\lambda \cdot f$.

[^2]: https://www.amazon.com/WiFi-6-Router-Gigabit-Wireless/dp/B08H8ZLKKK

[^3]: UE: user equipment, $B S$: base station.

[^4]: Conjugate beamforming is also referred to as matched filter beamforming.

