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Abstract

Integrated access and backhaul (IAB) facilitates cost-effective deployment of millimeter wave

(mmWave) cellular networks through multihop self-backhauling. Full-duplex (FD) technology, particu-

larly for mmWave systems, is a potential means to overcome latency and throughput challenges faced

by IAB networks. We derive practical and tractable throughput and latency constraints using queueing

theory and formulate a network utility maximization problem to evaluate both FD-IAB and half-duplex

(HD)-IAB networks. We use this to characterize the network-level improvements seen when upgrading

from conventional HD IAB nodes to FD ones by deriving closed-form expressions for (i) latency gain

of FD-IAB over HD-IAB and (ii) the maximum number of hops that a HD- and FD-IAB network can

support while satisfying latency and throughput targets. Extensive simulations illustrate that FD-IAB

can facilitate reduced latency, higher throughput, deeper networks, and fairer service. Compared to HD-

IAB, FD-IAB can improve throughput by 8× and reduce latency by 4× for a fourth-hop user. In fact,

upgrading IAB nodes with FD capability can allow the network to support latency and throughput targets

that its HD counterpart fundamentally cannot meet. The gains are more profound for users further from

the donor and can be achieved even when residual self-interference is significantly above the noise floor.

I. INTRODUCTION

Noteworthy hurdles exist in the cost-effective deployment of millimeter wave (mmWave)

cellular networks that can reliably supply users with high data rates and low latency—stemming

largely from the severe pathloss and blockage vulnerability when communicating at such high

carrier frequencies [1]–[4]. Integrated access and backhaul (IAB) is a promising means to deploy

mmWave networks with the base station (BS) density necessary to deliver reliable, widespread
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coverage [5]–[12]. IAB is a multihop network deployment where the majority of BSs—called

IAB nodes—wirelessly backhaul their traffic to fiber-backhauled donor nodes, possibly relaying

through other IAB nodes.

To meet the strict quality-of-service requirements for these modern applications, full-duplex

(FD) technology provides an approach to address resource bottlenecks—potentially improving

rate scaling and latency—and augments existing resource allocation solutions. Equipping IAB

nodes with FD capability allows them to simultaneously transmit and receive over the same

bandwidth, virtually doubling the available radio resources compared to conventional half-duplex

(HD) operation. It is well known that this transceiver-level upgrade can directly translate to link-

level gains, but the network-level gains are less clear. In this paper, we study the potential gains

in network performance—in terms of throughput, latency, and network depth—when upgrading

from HD IAB nodes to ones with FD capability, which may transcend the potential doubling of

spectral efficiency.

A. Motivation, Background, and Related Work

Multihop networks have been an active area of research for a few decades [13]–[15], as they

require fewer fiber connections to tessellate an area according to the given coverage criterion, for

example, received signal-to-noise ratio (SNR) above a threshold. However, per-user throughput

deteriorates and packet delays increase with the number of hops between the donor and a user-

equipment (UE) [14], [16]. Even though IAB networks operating at mmWave frequencies benefit

from larger bandwidth (offering high data rates on the backhaul) and reduced interference (from

directional communication and raised integrated noise power), they are subject to the same

fundamental throughput-coverage trade-off as conventional multihop networks. As the number of

hops increase, the throughput and latency performance degrade due to packet relaying, buffering,

and link multiplexing delays [6], [17].

As a result, to satisfy throughput and latency targets, efficient resource utilization at the IAB

node is of utmost importance and has led to a variety of studies on route selection [9], [18],

[19], link scheduling [8], [20], load balancing [21], and topology optimization [11], [22]. In [8],

[9], authors propose reinforcement learning frameworks that aim to minimize end-to-end latency

of packets, and [18] presents routing strategies that minimize the number of hops to improve

throughput and latency. Link scheduling and power allocation solutions that leverage simulated-

annealing are proposed in [20], the benefits of offloading UEs to IAB nodes is studied in [21],
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and genetic algorithm based schemes for IAB node placement and non-IAB link distribution are

developed in [22]. For a comprehensive survey on recent developments in IAB, please see [23].

In this work however, we investigate how FD capability can alleviate the aforementioned

resource bottleneck and latency issues present in IAB networks. Recent breakthroughs in self-

interference cancellation using analog [24], digital [25], and spatial [26], [27] cancellation

techniques can rid a receive signal of self-interference. In [28], the authors prototype a two-hop

IAB network and show that the throughput for FD-IAB is almost twice that of HD-IAB. In [25],

the authors evaluate a multi-user FD-IAB network and present user selection and digital self-

interference cancellation techniques to maximize the received signal power at the user. These

works, however, do not explore the network-level consequences of mmWave FD in an IAB

deployment. In this paper, we aim to quantify the relative gain of FD-IAB over HD-IAB in

terms of the UE throughput, network depth, and latency in realistic multihop IAB deployments.

B. Contributions

Our technical contributions are summarized as follows.

A single optimization framework for HD-IAB and FD-IAB networks. We formulate an

optimization problem to study latency and throughput—arguably the most important performance

metrics—in a mmWave IAB network. In Section II, we model the IAB network as a Jackson

network of queues, which allows us to leverage results from queueing theory to model packet

delay as the sojourn time and throughput as the packet arrival rate. We use this queueing model

to formulate a utility maximization with throughput and latency constraints that are both practical

and tractable. Our network optimization problem is a convex program and is parameterized by

the routing structure of the network, the link capacities, and scheduling restrictions on each

BS, which in turn depend on whether the BS is capable of HD or FD communication. Solving

the convex program returns the per-user throughput and the corresponding resource allocation

scheme that maximizes a desired network utility.

Characterizing the network gain of FD-IAB over HD-IAB. In Section IV, we use the

optimization framework to compare FD-IAB with HD-IAB and derive a closed-form expression

for latency gain. We also derive the maximum number of hops that achieve a target latency

and target throughput for each UE, for both FD-IAB and HD-IAB. In Section VI-C, we show

numerical results for both rate gain and latency gain of FD-IAB over HD-IAB. The benefit of

equipping the IAB nodes with FD transceivers is more subtle and powerful than the familiar
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link-level gains (i.e., what is typically less than a two-fold improvement in spectral efficiency).

We show that the more hops between a UE and the donor, the more the UE has to gain from

a FD-IAB deployment, both in terms of latency and throughput. For example, the throughput

of a UE four hops from the donor can improve by 8× if IAB nodes are upgraded to FD. This

many-fold increase stems from the increased scheduling opportunities that FD provides at each

IAB node, which reduces multiplexing delays that are particularly significant in the context of

multihop routing.

Impact of imperfect self-interference cancellation on network performance. In Sec-

tion VI-C we present numerical results to quantify the effect of imperfect self-interference

cancellation on the throughput performance of a FD-IAB network. We show that even if the

residual self-interference is 10 dB above the noise floor, a six-fold rate improvement can be

achieved by FD-IAB over its HD counterpart. Reducing the residual-interference-to-noise ratio

(RINR) below 0 dB can result in 8 times rate gain for a user at the fourth hop. The FD gains

saturate for RINR below −5 dB, suggesting that—from a network perspective—further self-

interference cancellation is likely not worthwhile. These insights can drive physical layer design

decisions for FD in IAB networks.

Notation: A:,i denotes the i-th column of matrix A, Ai,: denotes the i-th row of matrix A,

AT denotes the transpose of a matrix, [A]i,j denotes the (i, j)-th element of A, and A† denotes

the hermitian transpose of a matrix. The i-th element of vector a is denoted by ai. 1A denotes

the indicator function over set A, and |A| denotes the cardinality of set A.

II. SYSTEM MODEL

Illustrated in Fig. 1, we consider a downlink IAB deployment with one fiber-backhauled donor

node and K IAB nodes which wirelessly backhaul to the donor, possibly through multiple hops.

M UEs are present in the network, each of which can either be served by the donor or an IAB

node. Downlink data arrives at the donor from the network core and is delivered to the UEs,

using the IAB nodes as relays as needed. In this work, we will consider and evaluate both HD-

and FD-equipped IAB nodes. We assume UEs are conventional HD devices. We represent the

flow of data—the route between the source (donor) and a destination (UE)—through a routing

tree, T = (V , E), where V denotes the set of vertices (devices) such that |V| = K +M + 1 and

includes the mmWave BSs and the UEs. Henceforth, the term device will be used to refer to

the donor node, an IAB node, or a UE. E denotes the set of edges in the tree T such that if
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Fig. 1. A multihop routing tree with one donor node, K = 6 IAB nodes, and M = 18 UEs. Note that each IAB node has one

parent but can serve multiple children.

(u, v) ∈ E then u, v ∈ V and there exists a directed edge with u as the parent and v as the child.

In other words, a device v receives downlink data from a device u. Since all vertices, except for

the donor, have one (and only one) parent edge, we have |E| = K +M . Since an edge (u, v) is

uniquely identified by its child v, we will index edge (u, v) as v. An illustration of an example

IAB routing tree is shown in Fig. 1, where vertex 0 represents the donor and triangles denote

IAB nodes. IAB1 (vertex 1) is one hop away from the donor whereas IAB2 (vertex 2) is two

hops away since it communicates with the donor via IAB1. Similarly, UE1, UE3, and UE5 are

one-hop, two-hop, and three-hop UEs, respectively.

Link Capacities and Scheduling: Associated to each edge (u, v) ∈ E is the capacity of the

edge cv based on its link quality; note that cv is only indexed by v since each edge (u, v)

is uniquely identified by its child (i.e., each device has only one parent). In an IAB network,

simultaneously transmitting data on all edges in T is not possible due various hardware and

design constraints, such as HD constraints and/or limited multi-user communication capabilities.

A network scheduler typically decides the set of vertices that can communicate at a given time,

forming the set of active edges. Thus, each edge is only allocated a certain fraction of the time

by the scheduler to transmit data. We denote by µv the fraction of time allocated to edge (u, v)

for data transmission, meaning cvµv represents the effective long-term data rate of the edge

(u, v).

Modeling the IAB Network as Network of Queues: In order to analyze the delay distribution

of UEs across different hops, we model the IAB network as a network of queues. Data for each

UE arrives in packets at the IAB donor following a stochastic process and must be delivered
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Donor node

IAB node
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(a) Multihop routing tree.

UE1 UE2 UE3

(b) Equivalent queueing network.

Fig. 2. (a) A multihop routing tree with K = 2 IAB nodes and M = 3 UEs. The arrival rate of packets intended for each UE

is λ. (b) The equivalent queueing network of (a) with traffic splitting at the donor and each IAB node. The total arrival rate

into the network is 3λ.

to the destined UE along the route given by T . We denote by Am(t) the number of packets

destined for the m-th UE that arrives at the donor at time t, where λm = E[Am(t)] denotes the

mean of the arrival stochastic process for packets intended for the m-th UE (i.e., the arrival

rate). We use λ to denote the M × 1 vector of mean arrival rates λm for the M UEs in the

network. Each edge (u, v) ∈ T maintains a queue to buffer packets that u must transmit to v

and is referred to as queue (u, v).

Let F denote the |E| ×M routing matrix such that [F]l,m = 1 if traffic for the m-th UE is

routed through the l-th edge and is zero otherwise. The arrival rate to each queue is given by

the vector Fλ. Since the effective long-term data rate of edge (u, v) is cvµv, the mean service

time for queue (u, v) is given by 1/(cvµv). Modeling each edge as a queue equivalently implies

that the donor and IAB nodes maintain queues to buffer packets for each of their children. A

packet arriving at BS k is placed in queue (k, v) with probability (Fλ)v/(Fλ)k, as shown in

Fig. 2b. This ensures that the average number of packets delivered to each UE is the same as

the number of packets arriving at the donor destined for that UE.

III. FORMULATING AN IAB NETWORK DESIGN PROBLEM

With an IAB network model in place, we will now formulate a network utility maximization

subject to practical delay and throughput constraints. Our goal is to use this optimization problem
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to study the network performance improvement—in terms of throughput and latency—when

the HD transceivers at the IAB nodes are upgraded to FD ones, for a given deployment. Our

optimization problem is parameterized by the network topology and the choice of either HD- or

FD-equipped IAB nodes. Specifically, we use a routing matrix F to describe the routes between

the donor and the UEs and is readily obtained for a given routing tree. We use a capacity matrix

C and a scheduling matrix G to describe the effective long-term rate of each link, both of

which depend on the choice of HD or FD IAB nodes. Feasibility constraints enforce that each

link meets its demand. A latency constraint ensures that a fraction of packets η are delivered to

their target UE within δ units of time. We aim to find the average arrival rates λ and resource

allocations µ that maximize a chosen network utility. We outline these components of our design

in detail as follows and subsequently assemble our network design optimization problem.

Constraint 1: Fundamental constraints on arrival rate and resource fractions. As follows,

we capture the fundamental properties of the arrival rates λ, each of which must be non-negative,

and resource allocations µ, each of which must lie in the interval [0, 1].

λ ≥ 0, 0 ≤ µ ≤ 1 (1)

Constraint 2: Constraint on feasible arrival rate. The signal-to-interference-plus-noise ratio

(SINR) of the signal at device v when receiving from its parent u is given by SINRv, which

depends on a variety of environmental and system factors such as pathloss and transmit/receive

beamforming. The capacity of the edge (u, v) is

cv = W · log2(1 + SINRv) (2)

where W is the system bandwidth. Note that FD IAB nodes incur self-interference, making

SINR the metric of interest. HD IAB nodes are effectively interference-free under noise-limited

network conditions, meaning we can simply use the SNR.

Often, mmWave communication leads to noise-limited conditions due to highly directional

communication, severe pathloss at mmWave frequencies, and high susceptibility to blockages

[2], [29]. The severity of network interference in FD-IAB network is still an open question, but for

tractability we assume it is negligible, largely thanks to the aforementioned properties of mmWave

communication [4], [30]. Furthermore, the donor and other IAB nodes would likely be pole-

mounted and presumably deployed to avoid directed interference on the backhaul transmissions,

while UEs are likely on the ground. Together, these establish sufficient spatial isolation between
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transmitting and receiving devices that happen to be nearby and scheduled simultaneously. Also,

since the UEs are HD, backhaul transmissions would not suffer interference from arbitrary

directions, and as observed in [31], a competent scheduling algorithm further reinforces the noise-

limited behavior since it avoids scheduling interfering links in the same slot. Our simulations

also suggest noise-limited behavior for both HD- and FD-IAB deployments.

We denote by C the |E| × |E| diagonal matrix for edge capacities cv. Then, the product Cµ

is the vector containing the long-term average rate of each edge or, equivalently, the vector of

mean service rates of each queue. For the queues to be stable, the mean service rate of each

queue should be greater than its mean traffic arrival rate, leading to

Cµ > Fλ. (3)

Constraint 3: Scheduling constraints. We denote by G the (K+ 1)×|E| scheduling matrix

for the network, which defines the resource constraints on each BS (donor node or IAB node).

More precisely, [G]k,v = 1 if BS k must allocate orthogonal time resources to edge (k, v), and

zero otherwise. For example, for the routing tree in Fig. 2a the HD scheduling matrix GHD and

the FD scheduling matrix GFD are given in (4). For both matrices, the second row represents

IAB1. In the HD case, it must split resources between receiving from the donor, transmitting

to UE1, and transmitting to IAB2. On the other hand, when IAB1 is FD-capable, it can receive

while transmitting, and must no longer dedicate resources to edge (0, 1).

GHD =


1 1 0 0 0

0 1 1 1 0

0 0 0 1 1

 GFD =


1 1 0 0 0

0 0 1 1 0

0 0 0 0 1

 (4)

Constraint 4: Probabilistic latency constraint. If the arrival processes Am(t) are Poisson

and the queues have exponential service times, then the queueing network in Fig. 2b is a Jackson

Network [32, Section 9.9.1] without feedback loops, and the steady-state joint distribution of

the queueing network is product-form. Both the Poisson arrival process and the exponentially

varying packet size [33] are well-accepted models. As a result, we can treat each queue (u, v)

as an independent M/M/1 queue with input arrival rate (Fλ)v and mean service rate cvµv (the

effective capacity from device u to device v). Consequently, if Dv denotes the random variable

representing the delay experienced by a typical packet over queue (u, v), then Dv follows an

exponential distribution with the following cumulative density function (CDF).

P[Dv ≤ d] = 1− exp (−(cvµv − (Fλ)v) · d) (5)
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Let R(s, d) = ((s, u1), (u1, u2), . . . , (uk, d)) denote the route between source-destination pair

(s, d). A route is defined as the sequence of edges in T traversed by a packet to go from s to d.

For brevity, we will denote by R(m) the route between the donor and UE m. Let Dm be defined

as the total delay experienced by a packet destined for the m-th UE, which is simply the sum

of delays the packet incurred along its route.

Dm =
∑

(u,v)∈R(m)

Dv (6)

Since the per-hop delays {Dv} are independent exponential random variables with different

means, the sum delay Dm follows a hypoexponential distribution which is non-convex and

intractable. Thus, for our analysis we will use a stricter notion of delay. Let D̃m denote the

maximum delay experienced on any hop in its route to UE m.

D̃m = max
(u,v)∈R(m)

Dv (7)

It trivially holds that Dm ≤ hmD̃m, where hm =
∑

(u,v) 1{(u,v)∈R(m)} denotes the number of hops

between the donor and UE m. The CDF of D̃m is given by

P
[
hmD̃m ≤ d

]
=

∏
(u,v)∈R(s,d)

(
1− e−(cvµv−(Fλ)v)d/hm

)
. (8)

If we desire that a fraction η of packets are delivered to their target UE within δ units of

time, we can form a probabilistic latency constraint as P[hmD̃m ≤ δ] > η, or equivalently

log(P[hmD̃m ≤ δ]) > log(η). Mathetically, we have∑
(u,v)∈R(m)

log
(
1− e−(cu,vµu,v−(Fλ)v)δ/hm

)
≥ log(η), m = 1, 2, . . . ,M. (9)

Note that δ is the parameter which reflects the delay threshold of the network, whereas η sets

how strict it is that the threshold is met.

Objective: Maximize network utility. As is widely used by network designers, the objective

of our design is to maximize sum utility of the network. We denote by U(·) a non-decreasing and

concave utility function. There is a considerable body of literature exploring different applications

of various network utility functions such as network-wide proportional fairness [34], network-

wide max-min fairness [7], network-wide logarithmic utility for balanced load distribution [35],

and α-optimal user association [36]. The particular choice of U(·) is at the liberty of the network

designer and design requirements. In our simulation we will use the logarithmic utility function,
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U(·) = log(·), which maximizes the product of rates and achieves a healthy balance between

network sum-rate and fairness, and is a common choice for network design and evaluation [32].

Optimization problem. With our constraints and objective mathematically defined, the net-

work design problem can be formulated as follows, which aims to find the arrival rates λ and

resource allocations µ that maximize the sum utility of the network subject to our constraints.

maximize
λ,µ

M∑
m=1

U(λm) (10a)

subject to λ ≥ 0, 0 ≤ µ ≤ 1 (10b)

Cµ− Fλ > 0 (10c)

Gµ ≤ 1 (10d)∑
(u,v)∈R(m)

log
(
1− e−(cu,vµu,v−(Fλ)v)δ/hm

)
≥ log(η), m = 1, 2, . . . ,M (10e)

The objective (10a) is to maximize the network utility with respect to λ. Constraints (10b) are the

fundamental properties of λ and µ, and constraint (10c) ensures that the queues are stable and

do not accumulate to infinity. Along with the quality of the wireless environment, the capacity

matrix C depends on whether the IAB nodes are HD- or FD-capable. Constraint (10d) represents

the scheduling constraint on each BS, and the scheduling matrix G depends on if the IAB nodes

are upgraded from HD to FD. Finally, (10e) represents the probabilistic latency constraint.

Remark 1. Having FD capability at the IAB nodes relaxes the scheduling constraints (10d) on

the IAB nodes, and they can receive data from their parent while simultaneously transmitting

data to one of their children. This introduces a variety of potential network gains. First, a relaxed

scheduling constraint provides more scheduling opportunities to the backhaul links. This expands

the support of the network, also termed its throughput region, and as a consequence, an FD-

IAB network can support higher arrival rates per UE, denoted by the elements of λ, while

still satisfying (10e). Second, an IAB network with FD IAB nodes can support tighter delay

constraints. In other words, relaxing the constraint (10d) by upgrading to FD IAB nodes, an IAB

network can achieve latency targets δ that may have been infeasible for the equivalent HD-IAB

network. Moreover, since delay can grow arbitrarily as a network’s operating point approaches

the boundary of its throughput region, a seemingly minor expansion in the throughput region

can translate to a considerable reduction in latency. Third, with the expansion of the throughput

region and the feasible values of δ, FD-IAB can meet throughput targets with deeper networks
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and support more hops. This is advantageous for operators as they can then provide comparable

quality-of-service with fewer fiber-connected donor nodes, reducing infrastructure costs.

IV. MINIMUM FEASIBLE DELAY THRESHOLD AND LATENCY GAIN

The optimization problem in (10) provides a framework to study these network trade-offs

and meet system requirements. We now seek analytical expressions and insights using the

optimization framework in Section III. Specifically, we aim to answer the following questions.

(i) What is the minimum delay threshold δ∗ that an IAB network parameterized by F, G, C

can support? (ii) What is the gain in δ∗ for FD-IAB over HD-IAB? (iii) What is the maximum

number of hops feasible for an IAB network and how does it vary with δ∗? (iv) How does δ∗

vary with the minimum per-UE throughput requirement λmin? With these questions in mind,

we formulate and solve a linear program to find the minimum delay threshold, subject to the

constraints from (10).

A. Minimum Feasible Delay

Latency is a key performance metric in modern networks. 5G cellular networks, for example,

are designed to support end-to-end packet delays on the order of milliseconds for mission critical

and tactile internet applications [37]. In (10), the delay threshold of a network is captured by δ

and constraint (10e). For a network designer, it is useful to know the minimum delay a network

can support and how it relates network parameters, such as its routing matrix F, link capacities

C, and scheduling matrix G. Mathematically, this is equivalent to finding the minimum δ such

that problem (10) is feasible.

Minimizing δ without any constraints on λ, however, could lead to solutions that are practically

undesirable where UEs receive zero throughput. We address this by introducing a new constraint

λ ≥ λmin1 (11)

to ensure a minimum average arrival rate λmin is met at each UE, which can be tuned by

network engineers. While one can solve for the minimum δ using numerical solvers, the delay

constraint (10e) is non-convex when optimizing over δ, λ, and µ, and hence intractable. This

motivates us to substitute (10e) with a tighter constraint by replacing P[D̃mhm ≤ δ] ≥ η with
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P[Dvhm ≤ δ] ≥ η,∀(u, v) ∈ R(m). Combining all of this leads to the formulation of problem

(12), which includes minimizing over δ and incorporates modified constraints (12b) and (12e).

minimize
δ,µ,λ

δ (12a)

subject to λ ≥ λmin1, 0 ≤ µ ≤ 1, δ ≥ 0 (12b)

Cµ− Fλ > 0 (12c)

Gµ ≤ 1 (12d)

1− e−(cvµv−(Fλ)v)δ/hm ≥ η ∀(u, v) ∈ R(m), ∀m = 1, 2, . . . ,M (12e)

The new latency constraint (12e) ensures that the per-hop delay is less than δ/hm, which is a

stricter requirement than (10e), and hm is as defined in (8). Rearranging the terms in (12e) and

applying the change of variable t = − log(1 − η)/δ, problem (12) can be reformulated as the

following linear program.

maximize
t,λ,µ

t (13a)

subject to λ ≥ λmin1, 0 ≤ µ ≤ 1, t ≥ 0 (13b)

Gµ ≤ 1 (13c)

cvµv − (Fλ)v ≥ thm, ∀(u, v) ∈ R(m), ∀m = 1, 2, . . . ,M (13d)

Lemma 1. The optimal arrival rate vector for (13) is λ∗ = λmin1.

Proof. Let (u′, v′) be the bottleneck edge such that cv′µ∗v′ − (Fλ∗)v′ = t∗hm′ , for some UE

m′ and λ∗m′ > λmin, where t∗ and µ∗ denote the corresponding optimal points. Since, cv′µ∗v′ −

λmin(F1)v′ > cv′µ
∗
v′ − (Fλ∗)v′ , λmin1 relaxes the bottleneck constraint and achieves a higher

objective, which contradicts the optimality of t∗.

Remark 2. Note that the λ∗ = λmin1 is not a unique solution. For the non-bottleneck (u, v) and

m such that cvµ∗v − λmin(F1)v > t∗hm, any arrival rate λm which satisfies

λmin < λm <
cvµ

∗
v − t∗hm
(F1)v

will not change the optimal t, and hence is also optimal.



13

Theorem 1. Given the routing matrix F, scheduling matrix G, and capacity matrix C, the

optimal solution for (13) is given by

t∗ = min
k=0,1,...,K

1− λminGk,:C
−1F1

Gk,:C−1h̃
, (14)

where Gk,: is the k-th row of G and h̃ is a |E| × 1 vector such that h̃v = max
m:(u,v)∈R(m)

hm. If t∗

is less than zero, then (13) is infeasible and the IAB network parameterized by F,G,C cannot

support a per-UE arrival rate of λmin.

Proof. Using Lemma 1 and substituting µ from (13d) in (13c), we get

Gk,:C
−1(th̃ + λminF1) ≤ 1, ∀k = 0, 1, . . . , K

t ≤ 1− λminGk,:C
−1F1

Gk,:C−1h̃
, ∀k = 0, 1, . . . , K

Hence, the optimal t∗ achieves the tightest inequality and is given by (14).

Remark 3. The minimum feasible delay for the IAB network is given by δ∗ = − log(1− η)/t∗.

B. Latency Gain

Given Theorem 1, we can compute δ∗HD and δ∗FD for HD and FD deployments, respectively.

The latency gain ` of FD-IAB over HD-IAB can then be expressed as

` =
δ∗HD

δ∗FD
=
t∗FD
t∗HD

=
min

k=0,1,··· ,K

1−λmin(GFD)k,:C
−1
FDF1

(GFD)k,:C
−1
FDh̃

min
k=0,1,··· ,K

1−λmin(GHD)k,:C
−1
HDF1

(GHD)k,:C
−1
HDh̃

. (15)

Here, GHD and GFD denote the scheduling matrices for the HD and FD deployments, respec-

tively, and CHD and CFD denote the corresponding the capacity matrices. Depending on the

quality of self-interference cancellation and the structure of the IAB routing tree T , the bottleneck

BS—which achieves the minimum in (14)—could be different for FD and HD deployments.

Simplified expressions can be obtained if one considers the structure of the routing matrix F or

particular cases of C.

To illustrate a simple example, we refer to the IAB routing tree given in Fig. 2a to have

F =


1 0 0 0 0

0 1 1 0 0

0 1 0 1 1


T

(16)
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Fig. 3. Latency gain for a three-hop line network where all links have capacity C and there exists perfect self-interference

cancellation at FD IAB nodes. FD-IAB can support minimum per-user arrival rates infeasible for HD-IAB and arbitrarily large

latency gains can be observed.

and h̃ = [1, 3, 2, 3, 3]T (defined in (14)). The HD and FD scheduling matrices are as given

in (4), respectively. If we assume for this example that all edges have equal capacity C and

CHD = CFD = CI, then using Theorem 1 we have

t∗HD =
C − 4λmin

8
(17)

t∗FD =


C − 2λmin

5
, λmin ≤ C/7

C − 3λmin

4
, else

(18)

and the latency gain is given by ` = t∗FD/t
∗
HD, which is plotted in Fig. 3. This simple but insightful

example illustrates that IAB with FD nodes can support ` = 2.5 times tighter latency constraints

when the minimum arrival rate to each UE λmin is 10% of the link capacity C. When λmin is

just over a fifth of C, the latency gain is ` = 12 (nearly quintuples) and increases substantially

for small increases in λmin thereafter. This behavior is explained by the simple fact that FD-IAB

can support higher values of λmin which are infeasible for HD-IAB, driving the latency gain `

toward infinity.

V. ANALYTICAL RESULTS: LATENCY AND RATE OF A LINE NETWORK

In the interest of providing simple, intuitive, and tractable expressions that may serve as

guidelines for network design, we will present a detailed analysis of a simple but practically

relevant IAB deployment: the line network. A routing tree T represents a line network if no
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two BSs in T share a parent (e.g., the IAB network shown in Fig. 2a). We also assume that

CHD = CFD = C, meaning FD IAB nodes are capable of perfect self-interference cancellation.

In Section VI, we will show that there exists a self-interference cancellation threshold which, if

achieved, is effectively as good as perfect cancellation from a network perspective. We assume

that all backhaul edges have capacity Rb and all access edges have capacity Ra. We also assume

that Rb > Ra because BSs typically have more antennas and benefit from a higher array gain

compared to UEs, along with the simple fact that IAB networks are typically designed in this

fashion this since they are fundamentally backhaul-limited.

A. Latency Gain

In (15), we derived latency gain ` for a general IAB routing tree. In the following, we will

derive a closed-form expression for (14) under both HD and FD deployments of a line network,

along with the corresponding latency gain `.

Theorem 2. Let T represent a line network with K IAB nodes and one donor such that each BS

supports w UEs, where all backhaul edges have capacity Rb and all access edges have capacity

Ra. Then, for a feasible λmin and under perfect self-interference cancellation, we have

t∗HD(λmin, K) =



1− wλmin

(
3
Rb

+ 1
Ra

)
2(K+1)
Rb

+ Kw
Ra

, λmin ≤
Ra

4(K + 1)
(
Ra
Rb

)2
+ (2K + 3)w

(
Ra
Rb

)
+ w

1− wλmin

(
2K−1
Rb

+ 1
Ra

)
2(K+1)
Rb

+ 2w
Ra

, else

(19)

t∗FD(λmin, K) =



1− wλmin

(
1
Rb

+ 1
Ra

)
K+1
Rb

+ Kw
Ra

, λmin ≤
Ra

(K + 1)
(
Ra
Rb

)2
+ (K + 1)w

(
Ra
Rb

)
+ w

1− wλmin

(
K
Rb

+ 1
Ra

)
K+1
Rb

+ w
Ra

, else

.

(20)

Proof. See Appendix A.

Note that, since T represents a line network, K + 1 is also the number of hops between the

donor and the furthest UE. It is interesting to note that the bottleneck BS is either the first or
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the last IAB node. This can be attributed to the function f(·) (see Appendix A) and its property

that it is either non-increasing or non-decreasing depending on whether λmin is above or below

a threshold value given in Theorem 2. On close inspection, we see that f is the ratio of the

fraction of time the BS is idle and the time it takes for the BS to serve one unit of the total

arriving traffic (i.e., λminF1) under the delay constraints. The idle time is an increasing function

of k and a decreasing function of λmin, whereas λminF1 is an increasing function of k. This

explains the peculiar property of f . One can also interpret f as the product of the service rate

of the BS and the fraction of time it is idle—in some sense it is the effective service rate. The

inverse of which is the average delay experienced by the arriving flow at the BS. The objective

of (13) (or equivalently (12)) is to find the bottleneck BS with the maximum service time within

the resource allocation constraints. The delay threshold δ an IAB network can support is limited

by this bottleneck BS.

Corollary 1. For the network in Theorem 2, the latency gain is given by

` =



1− wλmin

(
1
Rb

+ 1
Ra

)
1− wλmin

(
3
Rb

+ 1
Ra

) 2(K+1)
Rb

+ Kw
Ra

K+1
Rb

+ Kw
Ra

, λmin ≤ Λ1

1− wλmin

(
1
Rb

+ 1
Ra

)
1− wλmin

(
2K−1
Rb

+ 1
Ra

) 2(K+1)
Rb

+ 2w
Ra

K+1
Rb

+ Kw
Ra

, Λ1 < λmin ≤ Λ2

2
1− wλmin

(
K
Rb

+ 1
Ra

)
1− wλmin

(
2K−1
Rb

+ 1
Ra

) , else

(21)

where

Λ1 =
Ra

4(K + 1)
(
Ra
Rb

)2
+ (2K + 3)w

(
Ra
Rb

)
+ w

Λ2 =
Ra

(K + 1)
(
Ra
Rb

)2
+ (K + 1)w

(
Ra
Rb

)
+ w

.

Proof. This is found directly by substituting t∗ from Theorem 2 into δ∗ = − log(1− η)/t∗.

B. Maximum Network Depth

In this section, we present analytical expressions for the maximum depth Kmax of a line

network that can support given latency and throughput targets. Note that the result of Theorem 2
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can also be written as

t∗HD(λmin, K) =



1− wλmin

(
3
Rb

+ 1
Ra

)
2(K+1)
Rb

+ Kw
Ra

, K ≤
Ra
λmin
− w − Ra

Rb

(
4Ra
Rb

+ 3w
)

2Ra
Rb

(
2Ra
Rb

+ w
)

1− wλmin

(
2K−1
Rb

+ 1
Ra

)
2(K+1)
Rb

+ 2w
Ra

, else

(22)

t∗FD(λmin, K) =



1− wλmin

(
1
Rb

+ 1
Ra

)
K+1
Rb

+ Kw
Ra

, K ≤
Ra
λmin
− w

Ra
Rb

(
Ra
Rb

+ w
) − 1

1− wλmin

(
K
Rb

+ 1
Ra

)
K+1
Rb

+ w
Ra

, else.

(23)

Let Kmax
HD and Kmax

FD represent the maximum number of IAB nodes for the HD and FD line

networks, respectively, that can guarantee a target delay threshold δtarget and minimum arrival

rate λmin. For notational convenience, let κHD and κFD denote the break points from (22) and

(23) as follows.

κHD =

Ra
λmin
− w − Ra

Rb

(
4Ra
Rb

+ 3w
)

2Ra
Rb

(
2Ra
Rb

+ w
) κFD =

Ra
λmin
− w

Ra
Rb

(
Ra
Rb

+ w
) − 1 (24)

Theorem 3. Let T represent a line network where all backhaul edges have capacity Rb, all

access edges have capacity Ra, and each BS supports w UEs. Suppose Kmax
HD + 1 and Kmax

FD + 1

are the maximum number of hops that can still meet a target delay threshold δtarget and a

minimum arrival rate λmin for FD-IAB and HD-IAB deployments, respectively. Then,

Kmax
HD =



1− wλmin

(
3
Rb

+ 1
Ra

)
− 2ζ

Rb

2ζ
(

2
Rb

+ w
Ra

)
 , ζ ≤ t∗HD(λmin, κHD)

1− wλmin

(
1
Ra
− 1

Rb

)
− 2ζ

(
1
Rb

+ w
Ra

)
2ζ
Rb

+ 2wλmin

Rb

 , else

(25)

Kmax
FD =



1− wλmin

(
1
Rb

+ 1
Ra

)
− ζ

Rb

ζ
(

1
Rb

+ w
Ra

)
 , ζ ≤ t∗FD(λmin, κFD)

1− wλmin
1
Ra
− ζ

(
1
Rb

+ w
Ra

)
ζ
Rb

+ wλmin

Rb

 , else

(26)

where ζ = − log(1− η)/δtarget.
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Fig. 4. The number of feasible hops Kmax for FD-IAB and HD-IAB as a function of (a) minimum service rate λmin and (b)

δtarget for various backhaul SNRs. FD-IAB can support more hops while meeting the throughput and latency constraints and

the marginal return of increasing backhaul SNR is more compared to HD-IAB.

Proof. Note that t∗HD and t∗FD are continuous and non-increasing in λmin and K. If δ∗ ≤ δtarget

then t∗ ≥ ζ . Choosing the appropriate branch of the piece-wise defined t∗ in (22) and (23), and

solving for K by setting t∗ ≥ ζ , we get the above results.

In Fig. 4a we present the effect of λmin on maximum feasible network depth Kmax + 1 as

computed in Theorem 3, for different backhaul SNR and access SNR of 5 dB. Theorem 3

assumes perfect self-interference cancellation and hence Rb and Ra are computed by applying

the Shannon formula to SNR. We evaluate (26) and (25) for a packet size of 10 KB, bandwidth

W = 100 MHz, and w = 5 UEs per BS. Solid lines denote Kmax
FD + 1 and dashed lines denote

Kmax
HD + 1. The plot shows that FD-IAB can increase maximum feasible network depth by about

three times for smaller throughput targets, compared to its HD counterpart. The plot also shows

that a 2 dB increment in the backhaul SNR typically translates to an increment of about two

hops in Kmax
FD . The same increment in backhaul SNR typically results in an increment of one hop

in Kmax
HD , and sometimes no increment at all. In other words, the marginal return of improving

the backhaul link quality is more for FD-IAB. Fig. 4b shows the variation of Kmax with the

latency target δtarget for fixed λmin and different backhaul SNR. The plot shows similar trends

as Fig. 4a and the marginal return of increasing backhaul SNR is more profound. Theorem 3

can also be used to derive a closed-form expression for hop gain by following steps similar to

Corollory 1.
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VI. SIMULATION RESULTS

In addition to the analytical results presented in the previous section, we also evaluate FD-IAB

network performance—in both line and more general multihop networks—through Monte Carlo

simulation and compare it against its HD counterpart.

A. Channel Model and Signal Propagation

We model mmWave channels using the Saleh-Valenzuela-based model [3]. Let Ntx and Nrx

denote the number of antennas at the transmitter and receiver respectively. The Nrx×Ntx channel

matrix H can be written as

H =

√
1

NrayNcluster

Ncluster∑
i=1

Nray∑
j=1

hi,jarx(AoAi,j)atx(AoDi,j)
† (27)

which is simply the composition of propagating Ncluster clusters, each having Nray rays. We

denote by hi,j ∼ CN (0, 1) the complex gain of the j-th ray in the i-th cluster. AoAi,j is the

angle of arrival of the ray at the receiver, and AoDi,j is the angle of departure at the transmitter.

The scalar in front of the summation handles power normalization. The vectors atx(·) and arx(·)

represent the array response vectors at the transmitter and the receiver, respectively.

We assume that the network is noise-limited and interference from neighboring BSs is negligi-

ble. Hence, received signals are corrupted by additive noise and—at FD IAB nodes—by residual

self-interference remaining after cancellation. Due to lack of measurements and characterization

of the mmWave self-interference channel, we do not assume a particular model for the self-

interference channel and our contribution does not rely on specific characteristics of a model.

Instead, we evaluate our system based directly on RINR, which captures the degree of residual

self-interference plaguing a desired receive signal after analog, digital, and/or spatial cancellation.

The SINR at a FD IAB node v in such a case is expressed as

SINRv =
SNRv

RINRv + 1
(28)

where RINRv is the RINR at the receiver due to self-interference and SNRv is the SNR the

equivalent HD IAB node observes, written as

SNRv =
PtxLv

∣∣w†rxHvftx
∣∣2

σ2 ·W
. (29)

Here, Ptx denotes the transmit power, Lv is the inverse pathloss, Hv is the channel matrix, ftx,

and wrx are the transmit and receive beamforming vectors, W is the system bandwidth, σ2 is

the noise power spectral density. The SNR at each UE can be expressed analogously.
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Fig. 5. A realization of the simulated line network with depth K + 1 = 4, having one donor and three IAB nodes. Five UEs

are randomly dropped around the donor and each IAB node.

B. Network Topology and Channel Parameters

Using the proposed optimization framework, we evaluate the gain of FD-IAB over HD-IAB for

various depths and topologies. We begin with line networks with depths K + 1 = 2, K + 1 = 3,

and K + 1 = 4, and then evaluate a more general two-child tree network where the donor

and each first-hop IAB node supports two child BSs. The IAB nodes are separated by 200

m, the BSs transmit at 30 dBm, and each BS is equipped with a uniform linear array (ULA)

with NBS = 64 antennas. Each UE has a 16-element ULA. Each BS serves five UEs which are

dropped uniformly in a 100 m radius around the BS. A sample drop for one donor and three IAB

nodes—a network depth of K + 1 = 4—line network is shown in Fig. 5 and the two-child tree

network is illustrated in Fig. 11. The channels between pairs of devices are generated using (27),

and f and w are drawn from a discrete fourier transform (DFT) codebook to maximize SNR

(i.e., codebook-based beam alignment). For each Monte Carlo iteration, we drop a new set of

UEs and generate channels such that Nray is drawn uniformly from the interval [1, 10] and Ncluster

is drawn from the interval [1, 6] [38]. The system operates at a carrier frequency of 30 GHz with

100 MHz bandwidth. For the pathloss, we use the model adopted in the 3GPP standard [39,

page 26] for urban environment (UMa), which incorporates the effects of blockage, the multi-

slope nature of the pathloss, and the elevation difference between the BSs and the users, through

parameters that have been fit to real-world data. The additive noise power spectral density is

−174 dBm/Hz plus a 10 dB noise figure.

Packets of size 10 KB arrive at the donor according to a Poisson process like the file transfer

protocol (FTP) model 3 [33]. We divide the capacity of each edge by the mean packet size and
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Fig. 6. Sum-rate as a function of RINR (a) at last-hop for various network depths and (b) at various hops in a network having

depth K + 1 = 4, where the delay threshold is δ = 3.5 msec/packet. Solid lines represent FD-IAB and dashed lines represent

HD-IAB. Supporting practical data rates for users at the third and fourth hops is feasible with FD-IAB.

normalize it to packets/sec, leading to units of delay in sec/packet. Note that these results can

be transformed to any packet size by appropriate scaling. We use CVXPY [40] to solve our

network design for η = 0.9 (i.e., 90% of the packets must be delivered to the destination UE

within the target delay threshold δ).

C. Rate and Latency Gain in Simulated Line Networks

Using (10), we will now discuss the effect of deploying FD-IAB on network throughput, under

the logarithmic utility function U(·) = log(·). As discussed earlier, the logarithmic utility achieves

a healthy balance between network sum-rate and fairness, unlike pure sum-rate maximization

which would result in greedy solutions that are unfair and practically undesirable, such as

allocating all the resources to a first-hop UE with the best channel.

Rate gain with imperfect self-interference cancellation. For various depths of the described

line network, we solve (10) for both HD and FD modes to obtain the optimal arrival rate vectors

λHD and λFD. Comparing FD to HD, the rate gain for UE m is defined as (λFD)m/(λHD)m.

Let Mi denote the set of UEs i hops from the donor. Then, the sum-rate at i-th hop is defined

as
∑
Mi

λm and the rate gain is defined as
∑
Mi

(λFD)m∑
Mi

(λHD)m
. Fig. 6a shows the last-hop sum-rate and

Fig. 7a shows the rate gain at the last hop versus RINR for various network depths. Naturally,

as RINR increases, sum-rate and consequently rate gain suffer due to increased residual self-

interference plaguing FD operation, diminishing the resource gains of FD over HD. Even with
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(a) At last-hop for various network depths.
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Fig. 7. From Fig. 6, the rate gain as a function of RINR (a) at last-hop for various network depths and (b) at various hops

in a network having depth K + 1 = 4, where the delay threshold is δ = 3.5 msec/packet. As RINR is decreased, the network

observes diminishing gains before saturating. Appreciable gains can be seen for RINR well above 0 dB, where self-interference

is as strong as noise.

self-interference that is ten times stronger than noise (i.e., RINR = 10 dB), however, appreciable

gains over HD are visible, especially for deeper networks. Reducing RINR below −5 dB does

not yield meaningful rate improvements, as sum-rate saturates, which can drive physical layer

FD design decisions from the perspective of a network operator.

Deeper networks benefit more from FD deployment. In Fig. 7a and Fig. 6a, we observe

that an IAB network with more hops has more to gain from FD deployment. At low RINR,

the last-hop gain for a network with depth two is about 1.5 whereas for a four-hop network the

last-hop sum-rate improves from 300 packets/sec to more than 2000 packets/sec, an eight-fold

rate improvement—far beyond the familiar potential doubling of capacity with FD. Fig. 6b and

Fig. 7b present the sum-rate and rate gain across different hops for a four-hop network. With

FD, users at all hops throughout the network enjoy a healthy rate, unlike in HD-IAB, where

only first-hop users see a high rate (even having used a logarithmic utility). UEs deeper in the

network see higher rate gains with FD, since their rates under HD-IAB are so poor.

Note that the rate gain for the first hop UE is about 0.5. This is because of the shape of the

constraint set in (10) for HD-IAB. With the HD restriction, and even with the logarithmic utility,

the first-hop UEs are greedily served because the third- and fourth-hop UEs can meet the delay

constraint with very small arrival rates. However, a more fair operating point can be reached

with FD-IAB. Thus, even though it seems to be sacrificing performance at the first-hop, in reality
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Fig. 8. (a) Sum-rate for a last-hop user as a function of delay threshold δ. (b) Sum-rate for users at various hops as a function of

delay threshold δ. Solid lines represent FD-IAB and dashed lines represent the HD-IAB, and for FD we consider RINR = −15

dB. Supporting practical arrivals rates at third and fourth hops for strict delay thresholds is feasible with FD-IAB.
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(a) At the last hop for various network depths.
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Fig. 9. (a) From Fig. 8a, the rate gain for a last-hop user as a function of delay threshold δ. (b) From Fig. 8b, the rate gain

for users at various hops as a function of delay threshold δ. As stricter delay thresholds are enforced, FD-IAB offers increasing

rate gain at the last hop over HD-IAB; very strict delay thresholds that cannot be met by HD-IAB can be met by FD-IAB.

FD-IAB improves the overall network performance, measured by the logarithmic utility.

FD-IAB allows for tighter delay constraints. In our previous results, we fixed a delay

threshold δ in examining rate gain. Now we evaluate rate gain for changes in delay threshold

δ. In Fig. 8a and Fig. 9a, we plot last-hop sum-rate and last-hop rate gain as a function of

delay threshold δ for various network depths. In doing so, we consider an RINR = −15 dB

in light of the diminishing gains at low RINR, with the understanding that increased residual

self-interference would degrade the backhaul capacities and affect the rate gain as in Fig. 7.
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Fig. 10. (a) Minimum feasible delay δ∗ of FD-IAB (solid) and HD-IAB (dashed) as a function of minimum rate requirement

λmin for various network depths, where RINR = −15 dB. (b) From (a), the corresponding latency gain ` of FD-IAB over

HD-IAB as a function of minimum rate requirement λmin for various network depths.

The rate improvement offered by FD-IAB is seen across network depths, with deeper networks

experiencing a higher rate gain as before. By alleviating the multiplexing delay at the IAB nodes,

FD-IAB improves the arrival rates at stricter delay constraints. In fact, delay constraints which

were infeasible for HD-IAB can be made feasible by upgrading to FD. Note that in Fig. 9a,

the gain at the fourth hop for δ = 3 msec/packet is infinite, because the corresponding HD-IAB

deployment is infeasible (rate of 0 packets/sec in Fig. 8a). The rate gain saturates with increasing

δ, because for large delay thresholds the per-user arrival rate is limited by the backhaul capacities

and not the multiplexing delay at the IAB node.

Fig. 8b and Fig. 9b show the sum-rate and rate gain across different hops for a four-hop

network. The observations are consistent with the story so far: UEs further from the donor have

more to benefit from FD-IAB. At very small δ, the gain tends to infinity since a delay constraint

that cannot be met by HD-IAB can in fact be met with FD. Like before, we see FD-IAB is

capable of delivering fairer service to UEs throughout the network, while still meeting the delay

constraints across multiple hops.

FD-IAB supports higher per-UE rates. To study improvements in per-UE rate with delay

constraint, we solve the linear program (13) for both FD-IAB and HD-IAB modes and employ

our definition of latency gain (15). We perform simulations fixing RINR = −15 dB and examine

the (λmin, δ
∗)-pairs that can be met by HD and those that can be met by FD. Fig. 10b illustrates

these results for various network depths, where curves offering higher λmin at lower δ∗ are
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Fig. 11. A realization of the simulated two-child tree network with one donor and six IAB nodes. The donor and each IAB

serves five UEs. Note that first-hop IAB nodes deliver backhaul to child IAB nodes, along with serving access.

more desirable (i.e., toward the lower right). For a two-hop network, both the HD and the

FD deployments handle the latency and throughput constraints equally well. With more than

two hops, however, the power of FD in this network setting is brought to light. For a given

latency target, FD-IAB can deliver a minimum rate λmin far greater than HD-IAB: for δ∗ = 20

msec/packet, FD offers over 1.5 times higher λmin in a four-hop network and over 1.3 times

higher λmin in a three-hop network. Minimum rate targets λmin that can be met by HD-IAB

networks only with prohibitively high delays, can also be met by FD-IAB while simultaneously

offering low latency. For instance, in a three-hop network, HD-IAB can deliver λmin = 900

packets/sec only be introducing delays well beyond what is practical; a FD-IAB network can do

so while meeting a latency of approximately δ∗ = 5 msec/packet. As a result, latency gain can

tend toward infinity.

D. Beyond Line Networks

While line networks are expected to be common for initial IAB deployments, the presented

framework is in no way limited to them. To briefly illustrate this, we use our framework to study

the IAB deployment in Fig. 11, which consists of one donor node, K = 6 IAB nodes, and five

UEs per BS. We refer to this as a two-child tree network since the donor and each first-hop IAB

node deliver backhaul to two IAB nodes. While not explicitly shown due to space constraints,

the key takeaways from the discussion on line networks holds, namely: (i) rate gain saturates
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Fig. 12. (a) Mean per-UE rate of FD-IAB (solid) and HD-IAB (dashed), and (b) Rate gain of FD-IAB over HD-IAB, as a

function of delay threshold δ at various hops in the two-child network in Fig. 11, where RINR = −15 dB. FD-IAB alleviates

the resource bottleneck due to branching at the donor and achieves a fairer rate distribution.

for RINR below around −5 dB, (ii) UEs further from the donor have more to benefit from an

FD-IAB deployment, and (iii) FD-IAB can support larger λmin for the same minimum feasible

delay δ∗ as was shown in Fig. 10.

Nonetheless, there are some additional insights to draw from this two-child tree network. To

start, we consider Fig. 12a, which shows the mean per-user arrival rate at various hops in the

network as a function delay threshold. Unlike line networks, the donor and first-hop IAB nodes

now deliver backhaul to more than one IAB node. Consequently, a HD-IAB deployment cannot

support strict latency requirements at the second- and third-hop with a practically viable arrival

rate. This is because first-hop IAB nodes must multiplex incoming and outgoing backhaul links,

significantly worsening the multiplexing delay and the radio resource bottleneck. First-hop users,

however, can enjoy high rates—even under strict delay thresholds—since they are not subjected

to these relaying delays. The disparity in user service is evident in Fig. 12a as the delay threshold

is made stricter, with first-hop arrival rate increasing as users deeper in the network see their

service degrading.

With FD-IAB, however, the resource bottleneck is alleviated and the network can serve its

multihop users much more fairly and with satisfactory rates. We can see from Fig. 12a that FD-

IAB can support delay thresholds infeasible for its HD counterpart, with a healthy throughput

across hops. The corresponding rate gain of FD-IAB over HD-IAB is shown in Fig. 12b. FD-

IAB can meet very strict delay thresholds for second- and third-hop users when HD-IAB cannot,
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driving the rate gain toward infinity as δ is decreased. As δ increases, the rate gain saturates like

in Fig. 9b. For first-hop users, we observe a rate gain less than one, which may seem undesirable

at first glance but like Fig. 7b is justified by FD-IAB achieving a fairer distribution of arrival

rates across hops.

Comparing these results of a two-child tree network to that of the simulated line network,

we notice a few key differences. Comparing Fig. 12b to Fig. 9b, we see that the rate gain of

the second- and third-hop users in the two-child tree network saturates to noticeably less than

2, while that for the line network saturates to nearly 2. This is difficult to explain precisely,

though it is likely largely due to the fact that the donor and each first-hop IAB node must

multiplex outgoing backhaul transmissions—which line networks do not suffer from. FD cannot

directly alleviate these multiplexing costs, suggesting that the network may be bottlenecked

by the resources consumed when juggling multiple backhual links. This motivates future work

to more thoroughly study this disparity across network topologies and investigate how to best

deploy IAB networks when IAB nodes are FD-equipped.

VII. CONCLUSION

We present a framework for analyzing the throughput and latency of IAB networks, which

can be readily used by network engineers to evaluate and optimize IAB deployments. We use

this framework to study the merits of equipping IAB nodes with FD capability, as a means

to alleviate resource bottlenecks traditionally faced by IAB networks. Analytical and numerical

results illustrate the network performance improvements of FD-IAB over HD-IAB and show that

the former offers a multitude of benefits. FD-IAB can facilitate lower latency, higher throughput,

deeper networks, and fairer service compared to conventional HD-IAB. FD upgrades can be

particularly transformative for deeper networks, where users at or near the last hop—which may

suffer in HD-IAB deployments—can enjoy improvements in rate and latency that dramatically

enhance their quality-of-service. Furthermore, FD-IAB widens the feasible operating region of

the network, allowing it to support latency and rate targets that HD-IAB fundamentally cannot

meet. We show that these gains can be observed in the presence of residual self-interference

that is near or even above the noise floor. These results motivate the use of FD to alleviate the

obstacles in latency and rate scaling suffered by traditional multihop IAB networks.
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APPENDIX A

PROOF OF THEOREM 2

Proof. Note that, [GHD]k,l = 1 if vertex l is the parent of k where as [GFD]k,l = 0. We define

fHD(k) =
1− λmin(GHD)k,:C

−1F1

(GHD)k,:C−1h̃
fFD(k) =

1− λmin(GFD)k,:C
−1F1

(GFD)k,:C−1h̃

The half-duplex case. Since we know the structure of the scheduling matrices, we have

fHD(k) =



1−wλmin

(
1
Ra

+ K
Rb

)
K+1
Rb

+ w
Ra

, k = 0

1−wλmin

(
1
Ra

+
2(K−k)+1

Rb

)
2(K+1)
Rb

+
w(k+1)
Ra

, 1 ≤ k < K

1−wλmin

(
1
Ra

+ 1
Rb

)
K+1
Rb

+
w(K+1)
Ra

, k = K

.

fHD(1) has a smaller numerator and larger denominator compared to fHD(0), and therefore

fHD(0) ≥ fHD(1). Similarly, fHD(K) ≥ fHD(K − 1). Hence, k = 0 and k = K will never result

in the bottleneck inequality. By observing the derivative of fHD(k) for 1 ≤ k < K,

dfHD(k)

dk
=
wλmin

(
2w(k+1)
RaRb

+ 4(K+1)

R2
b

+ w(2(K−k)+1)
RaRb

+ w
R2
a

)
− w

Ra(
2(K+1)
Rb

+ w(k+1)
Ra

)2 , 1 ≤ k < K.

we see that fHD(k) is decreasing if λmin ≤ Ra

4(K+1)
(
Ra
Rb

)2
+(2K+3)w

(
Ra
Rb

)
+w

and increasing otherwise.

Therefore, for the decreasing case, the bottleneck inequality is fHD(K−1) and for the increasing

case, the bottleneck inequality is fHD(1).

The full-duplex case. Starting similarly with fFD(k), we have

fFD(k) =



1−wλmin

(
1
Ra

+ K
Rb

)
K+1
Rb

+ w
Ra

, k = 0

1−wλmin

(
1
Ra

+K−k
Rb

)
K+1
Rb

+
w(k+1)
Ra

, 1 ≤ k < K

1−wλmin
Ra

w(K+1)
Ra

, k = K

.

Note that fFD(K) ≥ fFD(K−1), allowing us to draw analogous conclusions from the HD case.

Taking the derivative of fFD(k) for 1 ≤ k < K,

dfFD(k)

dk
=
wλmin

(
w(k+1)
RaRb

+ K+1
R2
b

+ w(K−k)
RaRb

+ w
R2
a

)
− w

Ra(
K+1
Rb

+ w(k+1)
Ra

)2 , 1 ≤ k < K

we see that when λmin <
Ra

(K+1)
(
Ra
Rb

)2
+w(K+1)

(
Ra
Rb

)
+w

, fFD(k) is decreasing (over 1 ≤ k < K)

and fFD(0) > fFD(1). Hence, the bottleneck inequality is fFD(K − 1). On the other hand, if

λmin ≥ Ra

(K+1)
(
Ra
Rb

)2
+w(K+1)

(
Ra
Rb

)
+w

, then fFD(k) is increasing for 1 ≤ k < K and fFD(0) ≤

fFD(1). Hence, the bottleneck inequality is fFD(0).
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