
MIMO FOR MATLAB: A Toolbox for
Simulating MIMO Communication Systems

Ian P. Roberts
https://mimoformatlab.com

Abstract—We present MIMO FOR MATLAB (MFM), a toolbox
for MATLAB that aims to simplify the simulation of multiple-
input multiple-output (MIMO) communication systems research
while facilitating reproducibility, consistency, and community-
driven customization. MFM offers users an object-oriented
solution for simulating a variety of MIMO systems including
sub-6 GHz, massive MIMO, millimeter wave, and terahertz
communication. Out-of-the-box, MFM supplies users with widely
used channel and path loss models from academic literature
and wireless standards; if a particular channel or path loss
model is not provided by MFM, users can create custom models
by following a few simple rules. The complexity and overhead
associated with simulating networks of multiple devices can be
significantly reduced with MFM versus raw MATLAB code, espe-
cially when users want to investigate various channel models, path
loss models, precoding/combining schemes, or other system-level
parameters. MFM’s heavy-lifting to automatically collect and
distribute channel state information, aggregate interference, and
report performance metrics relieves users of otherwise tedious
tasks and instills confidence and consistency in the results of
simulation. The use-cases of MFM vary widely from networks of
hundreds of devices; to simple point-to-point communication; to
serving as a channel generator; to radar, sonar, and underwater
acoustic communication.

I. OVERVIEW

Research and education on multiple-input multiple-output
(MIMO) communication systems are built on linear equations
of the form

ŝ =
√
P ·G ·W∗HFs+W∗n (1)

sometimes termed symbol-level or single-letter formulations
[1]. To communicate a symbol vector s over some channel
matrix H, a transmitter applies power P and a precoding
matrix F while a receiver applies a combining matrix W to
recover an estimate ŝ of the symbol vector s. Along the way,
path loss 1/G2 weakens the transmitted signal and additive
noise n corrupts the received signal. While these linear models
greatly simplify the sophistication of today’s communication
systems, simulating MIMO concepts and research can become
prohibitively complex and overwhelming when a network
grows to even a moderate size. The variety of channel models
and precoding/combining strategies used in MIMO commu-
nication, along with enforcing common normalizations, can
further complicate simulation and introduce the potential for
mistakes and inconsistency.

This has motivated us to create MIMO FOR MATLAB
(MFM), a toolbox for simulating MIMO communication sys-
tems [2]. MFM is written in an object-oriented fashion and
comes with a collection physical layer tools including a variety

Fig. 1. A network of eight devices scattered in space simulated in MFM.
Four transmit-receive pairs (shown as ×’s and ◦’s, respectively) use the same
time-frequency resource in their attempt to individually communicate.

of channel models, path loss models, transmitters, receivers,
and antenna arrays that can be used for sub-6 GHz, millimeter
wave (mmWave), terahertz (THz), and beyond. It supports both
fully-digital and hybrid digital/analog transceivers with options
for limited phase and amplitude control as well as fully- and
partially-connected analog beamforming networks. In addition
to its applications in research, MFM can act as an educational
tool to help students understand, experiment, and visualize
MIMO communication.

MFM is a physical layer toolbox that has support from the
antenna/spatial domain all the way up to a network of users.
By design, MFM has been created to be used at any level
within its capabilities. For instance, MFM can be used at its
lowest level for antenna array research or to draw channel
realizations from a particular model. At its highest level, MFM
can be used to simulate a network of many users, automatically
aggregating interference inflicted at each device by one an-
other. In between, simple point-to-point communication can be
simulated, allowing users to develop, implement, and evaluate
novel precoding and combining schemes.

MFM is freely available for use under the MIT license and
can be setup in MATLAB in minutes. It has been completely
documented in-line, which can be accessed using MATLAB’s
help function. In addition, the MFM website has extensive



network

device

transmitter

array

link

channel

path loss

device

receiver

array

channel state

information

channel state

information

Fig. 2. Example architecture of an MFM script simulating point-to-point
communication between a transmitting device and receiving device.

amounts of documentation, examples, and tutorials, which
will continue to be updated. Along with the official MFM
contents, users are encouraged to develop and share their
own channel models, path loss models, etc. to extend MFM’s
capabilities and We hope MFM will act as a platform that
facilitates consistency and reproducibility of MIMO research
and accelerates its development. We are interested in tracking
the reach it has and applications it serves to better improve
MFM in the future. If you use MFM, please cite this paper
and also the package itself.

MFM executes physical layer signal processing at the
symbol level, abstracting out the waveforms that carry those
symbols as is commonly done in MIMO literature. The object-
oriented structure of MFM can be summarized as in Fig. 2,
though select object(s) can be useful on their own. At the
lowest level of MFM are antenna arrays, channel models, and
path loss models. Transmitters and receivers leverage antenna
arrays to execute precoding and combining, respectively. De-
vices, which can have transmit and/or capability, are connected
to one another via links, which capture propagation via channel
and path loss models. The collection of devices and the links
connecting them comprise a network. A network instance in
MFM captures devices operating on the same time-frequency
resource, meaning all transmitting devices in a network can
inflict interference onto all receiving devices. As such, it is
up to users of MFM to properly choose devices present in the
network to capture time- or frequency-division.

MFM is a collection of MATLAB scripts that can be used
together, to varying degrees, to simulate MIMO communica-
tion systems. The MFM framework simplifies generating chan-
nels/network realizations, executing precoding and combining
strategies, and evaluating communication system performance.
With MFM, users can focus their attention on the aspects
of MIMO communication that are relevant to them since
MFM can handle the rest. For example, users interested in
creating MIMO precoding and combining strategies may want
to examine their strategies across many channel and path loss
models. MFM can enable such by providing a collection of
common channel and path loss models, which can be used
interchangeably network-wide with ease. In addition, MFM’s
heavy-lifting can relieve users of the headache associated with

tasks such as computing interference and collecting channel
state information, which grow daunting and overwhelming
with networks of moderate size.

As mentioned, MFM can be used to varying degrees.
For beamforming and array-related work, users may only
need MFM’s antenna array object. Those interested in using
MFM to generate channel realizations can use the antenna
array and channel objects. To use MFM to simulate point-
to-point MIMO communication—perhaps to experiment with
precoding/combining schemes—can use MFM at the link
level. To capture the impacts of interference, users can use
it at the network level. We imagine MFM could be used
for a variety of applications beyond strictly MIMO research
including stochastic geometry, joint communication and radar,
underwater acoustic communication, sonar, machine learning
in communications, and satellite communication. While MFM
is currently strictly a physical layer toolbox, other areas of
research, such as on scheduling, could leverage MFM to avoid
the headache associated with implementing physical layer
communication network-wide.

By using MFM as a common framework across the research
community, researchers can share their MFM scripts and
objects to facilitate reproducibility, broadening the impact of
their work, and instilling confidence in their results. Thanks
to its object-oriented design, MFM objects created by users
can be easily shared and implemented across the research
community. MFM was designed to accommodate customiza-
tions and expansions that a user sees fit. For example, if a
particular channel model that a user needs is not provided in
MFM, users can create their own by following a few simple
rules. Once created, the custom channel model can be easily
shared and then incorporated into MFM by others across the
research community. If particular additions to MFM are widely
used, there are avenues for them to be incorporated into future
versions of MFM.

II. LOW LEVEL OBJECTS AND USAGE

At MFM’s lowest level are its antenna arrays, channel
models, and path loss models.

A. Antenna Arrays

From which the term MIMO takes its name, let us begin
by outlining support for antenna arrays [3]. MFM’s array
object is used to represent antenna arrays, which can be
constructed as uniform linear arrays (ULAs), uniform planar
arrays (UPAs), or other arbitrary array the user wishes. Arrays
can be constructed in a few ways:

• a = array.create() creates an empty array with
no elements, after which elements can be added to the
array.

• a = array.create(N) creates a half-wavelength
ULA with N elements.

• a = array.create(M,N) creates a half-wavelength
UPA with M rows of N elements.

Arrays can be rotated and translated as desired and individual
array elements can be added or removed. To simulate a



typical MIMO communication system, creating an array
using the ULA or UPA method will often suffice without
significant modification, especially when the channel model
used is independent of the array geometry (e.g., a Rayleigh-
faded channel). Currently, MFM assumes isotropic elements,
though support for more practical element patterns will likely
be included in future versions.

Some array configurations—such as half-wavelength uni-
form linear and planar arrays—have well-known expressions
for their response as a function of direction. While such array
configurations also happen to be the most commonly used,
MFM supports arbitrary antenna arrays. In other words, MFM
does not restrict the type of arrays a user can construct.
In general, array elements can be placed arbitrarily in 3-D
in units of carrier wavelengths λ, which makes the array
behavior agnostic of the carrier frequency at which it operates.
To handle arbitrary array construction, MFM computes the
array response based on the relative positioning of the array
elements.

The relative phase shift experienced by the i-th array
element located at some relative (xi, yi, zi) due to a plane
wave in the direction (θ, φ) is

ai (θ, φ) = exp

(
j · 2π

λ
· ζ (xi, yi, zi, θ, φ)

)
(2)

where λ is the carrier wavelength and

ζ (x, y, z, θ, φ) = x sin θ cosφ+ y cos θ cosφ+ z sinφ (3)

The array response vector is constructed by collecting the
relative phase shift seen by each of the array’s N elements
as

a (θ, φ) = [a1 (θ, φ) , a2 (θ, φ) , . . . , aN (θ, φ)]T (4)

To obtain the array response of an array a in a particular
azimuth theta and elevation phi in MFM, one simply needs
to call

v = a.get_array_response(theta,phi)

MFM will automatically populate the array response vector v
based on the array geometry.

To weight the N elements of an antenna array a, one
can use a.set_weights(w), where w is a vector of N
complex weights. Note that the weights contained in w are
applied as is and are not conjugated beforehand. This can be
described mathematically by stating that the gain of an array
with weights w in the direction (θ, φ) is

g (θ, φ) = wTa (θ, φ) (5)

where (·)T denotes transpose (not conjugate transpose). There-
fore, to so-called conjugate beamform (i.e., matched filter)
in the direction of (θ, φ), one would take w = a (θ, φ)

c,
where (·)c denotes element-wise conjugation. To achieve this
in MFM, this would simply be

v = a.get_array_response(theta,phi)
w = conj(v)

b

b

b

(θ, φ)

w1

wN

+g(θ, φ)

aN (θ, φ)

a1(θ, φ)

︸︷︷︸
w

b

b

b

Fig. 3. The gain of a weighted array in a direction (θ, φ).

a.set_weights(w)

To evaluate the complex gain g achieved by a weighted
array a in the direction (theta,phi), one could use the
following.

g = a.get_array_gain(theta,phi)

As will be discussed, the precoding and combining executed
by MFM does not use this beamforming feature of array ob-
jects, even hybrid digital/analog precoding and combining ar-
chitectures. Instead, MFM executes precoding and combining
at the transmitter and receiver objects, respectively.

B. Channel Models

The channel objects in MFM are used to capture the
over-the-air mixing that takes place across transmit antennas
and receive antennas, leading to a channel matrix H. Fol-
lowing convention in MIMO literature, channel matrices H
in MFM are always of size Nr × Nt, where Nr antennas
are at the receiver and Nt antennas are at the transmitter.
Currently, MFM only supports these frequency-flat channels
but work is ongoing to extend its support to frequency-
selective ones. It is important to keep in mind that while MFM
has MIMO in its name, it also supports single-input single-
output (SISO) scenarios to an extent. MFM supports a variety
of channel models including the Rayleigh-faded channel, line-
of-sight (LOS) channel, ray/cluster channel (extended Saleh-
Valenzuela model [4]), and spherical-wave channel [5].

To create a Rayleigh-faded channel object c, for instance,
one can simply use

c = channel.create(’Rayleigh’)

Other channels can be created similarly. Setup of a channel
c begins by declaring the propagation velocity (e.g., 3× 108)
and carrier frequency using

c.set_propagation_velocity(vel)
c.set_carrier_frequency(fc)

While MFM was created for conventional electromagnetic-
based wireless communication, affording users the ability to
set the propagation velocity may lend MFM support to other
fields such as underwater acoustic communication where the



propagation velocity of sound in the ocean is often taken
to be around 1.5 × 103 m/s, for example. Note that setting
the carrier frequency will automatically update the channel’s
carrier wavelength according to its propagation velocity.

The next necessary step is informing the channel of the
transmit and receive arrays between which it lives, which can
be accomplished by

c.set_arrays(atx,arx)

where atx and arx are the transmit and receive array objects,
respectively. Informing channel objects of the transmit and
receive arrays dictates the size of the to-be-realized channel
matrix H and also provides geometric channel models—such
as the LOS channel and ray/cluster channel—with access to
the array responses. Each channel model will have unique
setup steps before it can becomes useful.

Once a channel object c has been created and properly
set up, a realization of the channel is merely one line of code.

H = c.realization()

This is especially convenient for Monte Carlo simulations,
where channel realizations are placed within a loop, as below.

for i = 1:N
...
H = c.realization()
...

end

Any stochastics associated with the channel model will be
redrawn from their respective distributions when constructing
the channel matrix on each realization. Users can create
custom channel models that are compatible with MFM by
following a few simple rules; more information can be found
on the MFM website.

C. Path Loss Models

While channel models capture the small-scale mixing be-
tween transmit and receive antennas, path loss models capture
the large-scale gain G between a transmitter and receiver (e.g.,
due to propagation loss, shadowing, blockage, etc.). Path loss
models can be used on their own to realize values of G directly
or in the point-to-point and network settings. A number of path
loss models exist in MFM including free-space path loss (with
and without log-normal shadowing) and two-slope path loss.
More path loss models are continuing to be added to MFM.
Creating a free-space path loss object p can be achieved via

p = path_loss.create(’FSPL’)

After setting its propagation velocity and carrier frequency, the
path loss exponent ple can be set as

p.set_path_loss_exponent(ple)

The distance of the path d can be set using

p.set_distance(d)

From there, the path loss can be realized using

L = p.realization()

which will return a power loss L according to the free-space
formula

L−1 = G2 =

(
λ

4π

)2

×
(
1

d

)η
(6)

where η is the path loss exponent and d is the distance of
the path. More complicated path loss models may require
additional setup, and those involving stochastics (e.g., with
shadowing) may realize a random path loss on each realization.

III. LINK-LEVEL USAGE

A. Transmitters

A transmitter in MFM is captured by the transmitter
object and its subclasses. A transmitter can be created
via

tx = transmitter.create()

By default, a transmitter object employs fully-digital
precoding, but MFM also supports hybrid digital/analog pre-
coding. The symbol vector departing a fully-digital transmitter
follows the form

x =
√
P · Fs (7)

where P reflects the transmit power applied to a symbol
vector s having undergone precoding by a matrix F. The
main properties of a transmitter include its antenna array,
transmit power, precoding matrix (i.e., F), precoding power
budget, transmit symbol (i.e., s), channel state information,
and symbol bandwidth (i.e., B). A transmitter’s proper-
ties can be set using various set commands. For example, to
set the transmit power of a transmitter tx, one can simply use

tx.set_transmit_power(P,’dBm’)

where P is the transmit power in dBm.
To limit the power associated with precoding, MFM sup-

ports a precoding power budget, which takes on the form

‖F‖2F ≤ E (8)

where E is the precoding power budget. By default, MFM sets
the precoding power budget to E = Ns.

The precoding matrix can be set using

tx.set_precoder(F)

where F is an Nt × Ns precoding matrix, or using other
methods as we will discuss shortly.

MFM supports hybrid digital/analog precoding via its
transmitter_hybrid object, which is a subclass of the
transmitter object, meaning it inherits all of the properties
and functions discussed so far. The symbol vector departing a
hybrid transmitter follows the form

x =
√
P · FRFFBBs (9)

where a digital precoding matrix FBB followed by an analog
precoding matrix FRF are applied to symbol vector s. A



hybrid digital/analog transmitter can be created by including
the ’hybrid’ specifier when creating a transmitter.

tx = transmitter.create(’hybrid’)

The number of radio frequency (RF) chains, phase and am-
plitude resolution of analog beamforming, and connected-ness
of the analog beamforming network can all be configured as
desired.

Once setup, the hybrid transmitter’s digital and analog
precoders can be set via

tx.set_precoder_digital(F_BB)
tx.set_precoder_analog(F_RF)

where F_BB is an Lt×Ns digital precoding matrix and F_RF
is an Nt × Lt analog precoding matrix.

Methods to explicitly set the precoding matrices have been
discussed. However, this is not always a very attractive ap-
proach, especially since it can severely undermine the advan-
tages of MFM’s object-oriented design. This motivates setting
a transmitter’s precoder(s) via

tx.configure_transmitter(strategy)

where strategy is a string specifying the strategy/method to
use when designing the transmitter’s precoder(s). For example,
for eigen-based precoding, one can use

tx.configure_transmitter(’eigen’)

which will automatically use the transmitter’s channel state
information to design its precoder. This string-based way to
specify a transmit strategy is particularly useful since it keeps
main simulation scripts free of the linear algebra involved
in precoder design, allows users to easily switch between
strategies, and makes setting precoders network-wide much
more manageable. Users can add custom transmit strategies
with a few simple steps.

B. Receivers

A receiver in MFM is captured by the receiver object
and its subclasses. A receiver can be created via

rx = receiver.create()

Like the transmitter, a receiver object employs fully-digital
precoding by default, though hybrid digital/analog receivers
are supported. The estimated symbol vector output by a fully-
digital receiver follows the form

ŝ = W∗(y + n) (10)

where a combining matrix W is applied to the signal vector y
impinging the receive array plus noise n. The main properties
of a receiver include its antenna array, combining matrix
(i.e., W), receive symbol (i.e., ŝ), noise power spectral den-
sity (i.e., N0 or σ2

n), channel state information, and symbol
bandwidth (i.e., B). Like the transmitter, a receiver
object’s properties can be set using its various set commands.

MFM models noise as being additive, i.i.d. Gaussian across
receive antennas. The noise vector n is drawn from the
complex Gaussian distribution as

n ∼ NC
(
0, σ2

n · I
)

(11)

where σ2
n is the average noise energy per symbol (joules) (i.e.,

the noise power spectral density). To set the noise energy per
symbol, we can use

rx.set_noise_power_per_Hz(psd,’dBm_Hz’)

where psd is the noise power spectral density is in dBm/Hz.
A receiver’s combiner can be set via

rx.set_combiner(W)

where W is an Nr × Ns combining matrix. Like the
transmitter, receiver combining strategies can be spec-
ified using strings like ’eigen’ or ’mmse’ with
rx.configure_receiver(strategy) rather than set-
ting the combining matrix explicitly.

Like with transmission, MFM supports hybrid digital/analog
receivers via its receiver_hybrid object, which is a
subclass of the receiver object, meaning it inherits all of
the receiver properties and functions discussed so far. The
receive symbol output by a hybrid receiver takes the form

ŝ = W∗
BBW

∗
RF(y + n) (12)

where an analog combining matrix followed by a digital
combining matrix are applied to a received signal vector y
plus noise n. A hybrid receiver can be created by including
the ’hybrid’ specifier when creating a receiver.

rx = receiver.create(’hybrid’)

The settings pertinent to a hybrid digital/analog receiver can
be set with the same functions of a hybrid digital/analog
transmitter. The number of RF chains, connected-ness of the
hybrid receiver, and constraints of analog combining can all be
configured in the same fashion as with the hybrid transmitter.

C. Devices

The device object, as its name suggests, represents a
wireless communications terminal such as a user equipment
(UE), base station, and the like. A device object having only
transmit or receive capability will contain a transmitter
or receiver, respectively. A device object that has both
transmit and receive capability—i.e., a transceiver—will be
comprised of both a transmitter and receiver.

An device can be created via

d = device.create(type)

where type is either ’transmitter’, ’receiver’, or
’transceiver’ (default). It can be placed in 3-D space by
setting its coordinate via

d.set_coordinate(x,y,z)



transmitter

receiver

device

transmitter

receiver

device

︸ ︷︷ ︸
device A

︸ ︷︷ ︸
device B

link

forward link

reverse link

(head)

channel, path loss

channel, path loss

(tail)

Fig. 4. A link established between two transceivers.

where x, y, and z are Cartesian coordinates in meters.
The location of the device will be essential for geometry-
dependent path loss and channel models in addition to visual-
ization. Other device parameters can be set straightforwardly
using a variety of set commands.

In many ways, the device object acts as a proxy for con-
figuring and interfacing with its transmitter and/or receiver. As
such, the device is supplied with a number of passthrough
functions that make directly interfacing with its transmitter
and/or receiver simpler. For instance, the passthrough function

d.set_transmit_power(P,’dBm’)

will set the transmit power of the device’s transmitter, rather
than the user needing to do

d.transmitter.set_transmit_power(P,’dBm’)

Declaring which other device dev a given device d should
transmit to (i.e., the destination device) is accomplished via

d.set_destination(dev)

where dev is a device with receive capability. Likewise,
declaring the device it should receive from (i.e., source device)
is accomplished via

d.set_source(dev)

where dev is a device with transmit capability. This source-
destination concept is pertinent to particular use-cases of
MFM, particularly at its link and network levels, which will be
discussed shortly, though also can be used in scenarios outside
of such.

D. Links

Between any two devices sharing the same radio resources
exists a channel matrix and path loss connecting them. MFM
employs exactly that in its link object used to connect a pair
of device objects, with the caveat that one of the devices
must have transmit capability and the other have receive
capability; otherwise the physical connection (or link) between

the two devices would be immaterial. Examining our familiar
MIMO formulation, we can see that MFM uses a link to
capture the channel matrix H and large-scale gain G due to
path loss.

Suppose there exist two devices d1 and d2, where d1 has
transmit capability and d2 has receive capability. Note that
one or both devices could be transceivers. A link connecting
these two devices is created via

lnk = link.create(d1,d2);

By convention, the first device (d1 in this case) is called the
head while the second device (d2) is called the tail. The head
always has transmit capability and the tail always has receive
capability.

Since both d1 and d2 could be transceivers, a link may
exist between the two device objects in both directions, as
illustrated by Fig. 4. We refer to the link from the head to the
tail as the forward link and from the tail to the head as the
reverse link. To handle cases when the forward and reverse
links are symmetric (or reciprocal), a single link object
contains both the forward and reverse links. A link object,
therefore, has two channel objects (a forward channel and
reverse channel) and two path_loss objects (forward path
loss and reverse path loss).

The channel and path loss models used on the forward and
reverse links of a link object lnk can be set using

lnk.set_channel(chan_fwd,chan_rev)
lnk.set_path_loss(path_fwd,path_rev)

where chan_fwd and chan_rev are channel objects and
path_fwd and path_rev are path_loss objects.

IV. NETWORK-LEVEL USAGE

At the highest level of MFM’s object-oriented structure is
the network_mfm object, which houses device objects
and the link objects connecting them. Recall that the link
object represents a physical connection between two devices
rather than a communication link. A network_mfm object
can be created simply via

net = network_mfm.create()

Currently, a network in MFM captures scenarios where all
devices present in the network share the same time-frequency
resource, meaning some degree of interference will be inflicted
onto each receiver in the network by each transmitter.

Suppose we have two device objects dtx and drx, where
dtx is a transmitting device and drx is a receiving device,
both of which have already been set up as necessary. To inform
the network that dtx should transmit to drx and that drx
should receive from dtx, the following command is used

net.add_source_destination(dtx,drx);

which adds dtx and drx as a source-destination pair, dtx
being the source and drx being the destination. There are
multiple ways to add devices to a network; this is merely the
most useful.



To establish a physical connection (i.e., channel and path
loss) between each transmitting device and each receiving
device in the network, links can be added manually, though this
is very cumbersome even for a small networks. Fortunately,
MFM comes with a more convenient way of automatically
populating links between pairs of devices via

net.populate_links_from_source_destination()

which will populate all links from each source device to each
destination device. Recall that since all devices in an MFM
network share the same radio resources, each transmitting
device will impose interference on those it does not intend
to transmit to, meaning the number of links is equal to the
number of source-destination pairs squared.

To specify the channel and path loss models used on all
links in the network, we can invoke

net.set_channel(c)
net.set_path_loss(p)

where c and p are channel and path_loss objects,
respectively. MFM offers the user the convenience of setting
various system parameters network-wide instead of setting
them at each device one-by-one, such as the carrier frequency,
noise power, etc.

Once it has been properly setup, invoking a realization of
an entire network net is achieved with a single line

net.realization()

which realizes all channels and path loss models in the
network. To collect and distribute channel state information
across a network net, use

net.compute_channel_state_information()
net.supply_channel_state_information()

which can be used by devices to automatically configure
themselves based on their transmit and receive strategies. To
configure all transmitters and receivers across the network
using string-specified transmit and receive strategies, use, for
example,

net.configure_transmitter(’eigen’)
net.configure_receiver(’mmse’)

which transmits using eigen-beamforming and receives in an
minimum mean square error (MMSE) fashion.

With a network realized and its devices configured, the
received signals can be computed via

net.compute_received_signals()

which will automatically aggregate interference caused by
other transmitting devices in the network.

To report the mutual information (under Gaussian signaling)
achieved between a particular pair of devices dev_1 and
dev_2, use

mi = net.report_mutual...
_information(dev_1,dev_2)

Fig. 5. The spectral efficiency of a point-to-point Rayleigh-faded network as
a function of SNR simulated using MFM.

which will automatically account for interference caused by
other transmitting devices in the network. To report the symbol
estimation error achieved between a particular pair of devices
dev_1 and dev_2, use

[err,nerr] = net.report_symbol...
_estimation_error(dev_1,dev_2)

where the first return value err is the absolute symbol
estimation error ‖ŝ−s‖22 and the second return value nerr is
the symbol estimation error normalized to the transmit symbol
energy defined as

‖ŝ− s‖22
‖s‖22

(13)

V. CONCLUSION

MFM aims to improve the reproducibility of MIMO re-
search by providing a common framework for researchers to
use when implementing their work. Out-of-the-box, MFM is
equipped with a variety of widely used channel and path loss
models. Custom objects that integrate with MFM can be cre-
ated independently by users by following a few simple rules.
These third-party customizations to MFM can then be shared
within the research community for others to use and potentially
integrated into MFM itself. Beyond research, MFM’s potential
also lay in educating students on MIMO and general wireless,
offering students and educators a tool to explore concepts
numerically, mathematically, and algorithmically.

ACKNOWLEDGMENTS

This work is supported by the National Science Foun-
dation Graduate Research Fellowship Program under Grant
No. DGE-1610403. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
National Science Foundation.



REFERENCES

[1] R. W. Heath Jr. and A. Lozano, Foundations of MIMO Communication.
Cambridge University Press, 2018.

[2] I. P. Roberts, “MIMO for MATLAB: A toolbox for simulating MIMO
communication systems in MATLAB,” http://mimoformatlab.com, 2021.

[3] C. Balanis, Antenna Theory: Analysis and Design. John Wiley & Sons,
2016.

[4] R. W. Heath, N. González-Prelcic, S. Rangan, W. Roh, and A. M. Sayeed,
“An overview of signal processing techniques for millimeter wave MIMO
systems,” IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, pp. 436–453,
Apr. 2016.

[5] J.-S. Jiang and M. A. Ingram, “Spherical-wave model for short-range
MIMO,” IEEE Trans. Commun., vol. 53, no. 9, pp. 1534–1541, Sep.
2005.


