28 GHz Phased Array-Based Self-Interference Measurements for Millimeter Wave Full-Duplex

Aditya Chopra, Ian P. Roberts, Thomas Novlan, and Jeffrey G. Andrews

IEEE Wireless Communications and Networking Conference (WCNC) Austin, Texas · April 2022

I. P. Roberts and J. G. Andrews are with 6G@UT in the Wireless Networking and Communications Group at the University of Texas at Austin.

A. Chopra and T. Novlan are with AT&T Labs, Austin, Texas.

For the past century, devices have not been able to transmit and receive information simultaneously using the same frequency spectrum.

"half-duplex" operation

Half-duplex operation is a wasteful use of spectrum and introduces delays in communication.

What if devices could transmit and receive at the same time using the same frequency spectrum?

"full-duplex" operation

Full-duplex would transform wireless communications on multiple fronts.

A base station could transmit and receive simultaneously.

Full-duplex would transform wireless communications on multiple fronts.

It would facilitate the deployment of low-latency, multi-hop networks.

Why don't devices operate in a full-duplex fashion?

The research community lacks a good understanding of self-interference in full-duplex millimeter wave (mmWave) systems.

- Current models are sensible but have not been verified by measurements.
- Existing measurements are extremely limited.¹
- Valid question: "Is self-interference negligible when using highly directional beams?"

As a result of this uncertainty:

- We cannot accurately evaluate full-duplex mmWave systems.
- We cannot develop practically sound solutions for full-duplex mmWave systems.

We have conducted the first extensive measurement campaign and characterization of self-interference in full-duplex mmWave systems.

¹S. Rajagopal et al., "Self-Interference Mitigation for In-Band mmWave Wireless Backhaul," IEEE CCNC, 2014.

Self-interference depends on:

- 1. transmit beam
- 2. receive beam
- 3. self-interference channel

Could compute self-interference if all three are known (in theory).

- not possible to inspect the channel directly
- no measurement-backed models exist for the channel (near-field? far-field? both?)

 \implies Inspect the channel using transmit and receive beams.

Measurement Setup and Methodology

A block diagram of our measurement setup.

Measurement Setup and Methodology

Our measurement platform in an anechoic chamber.

Measurement Setup and Methodology

Narrow beams allow us to inspect self-interference with fine granularity.

11

Suppose we steer our transmit beam toward
$$\underbrace{(\theta_{tx}, \phi_{tx})}_{az-el}$$
 and receive beam toward $\underbrace{(\theta_{rx}, \phi_{rx})}_{az-el}$.

The self-interference power at the receive array output can be expressed as

$$P_{\rm SI}\left(\theta_{\rm tx}, \phi_{\rm tx}, \theta_{\rm rx}, \phi_{\rm rx}\right) = P_{\rm tx} \cdot \left| \underbrace{\mathbf{w} \left(\theta_{\rm rx}, \phi_{\rm rx}\right)^{\rm T} \mathbf{Hf} \left(\theta_{\rm tx}, \phi_{\rm tx}\right)}_{\mathbf{Hf}} \right|^{2}$$
(1)

self-interference coupling factor

where P_{tx} is the power into the transmit array.

We will inspect the self-interference channel ${\bf H}$ by sweeping the transmit and receive beams and measuring self-interference power.

The isolation \boldsymbol{L} between a transmit beam and receive beam is

$$L = \frac{1}{\left|\mathbf{w}\left(\theta_{\mathrm{rx}}, \phi_{\mathrm{rx}}\right)^{\mathrm{T}} \mathbf{H} \mathbf{f}\left(\theta_{\mathrm{tx}}, \phi_{\mathrm{tx}}\right)\right|^{2}}.$$
 (2)

Received self-interference power is

$$P_{\rm SI}\left(\theta_{\rm tx}, \phi_{\rm tx}, \theta_{\rm rx}, \phi_{\rm rx}\right) = P_{\rm tx} \cdot L^{-1}.$$
 (3)

We generally desire $P_{\rm SI} \leq P_{\rm noise}$ for full-duplex.

 \implies We desire isolation $L \ge 53$ dB.

For this work, our transmit and receive spatial profiles are:

- in azimuth from -60° to 60° with 1° resolution (121 points)
- in elevation from -10° to 10° with 1° resolution (21 points)

y

 $121 \times 21 = 2541$ transmit/receive directions $2541 \times 2541 \approx 6.5$ million self-interference power measurements L typically ranges from $20~\mathrm{dB}$ to $60~\mathrm{dB}.$

Less than 10% of beam pairs yield $L \ge 53$ dB.

Very few beam pairs yield extremely high isolation.

Beams typically do not provide enough isolation for full-duplex on their own.

 \implies Need to take additional measures to mitigate self-interference.

Measurement Results — Statistics Per Transmit and Receive Beam

Figure 1: For each transmit beam and receive beam, shown are the median, maximum, and minimum isolation across all receive and transmit beams, respectively.

Measurement Results — For Particular Transmit and Receive Beams

Figure 2: The isolation achieved across transmit and receive beams for particular receive and transmit beams (shown as red \circ), respectively.

Highly directional beams do not provide enough isolation for full-duplex on their own.

- $\bullet\,$ Transmitting toward the receiver \rightarrow typically low isolation.
- $\bullet\,$ Receiving toward the transmitter \rightarrow typically low isolation.

No beams provide high isolation universally.

• Isolation depends on the transmit and receive beams jointly.

Small shifts in steering direction \rightarrow significant variability in self-interference coupled.

• Can this be used to our advantage to reduce self-interference?

Good topics for future work: beam selection for mmWave full-duplex, SI channel modeling, self-interference cancellation for mmWave systems.

Thank you! Questions? Feedback?

Feel free to reach out to me at ipr@utexas.edu.

Keep an eye out for our journal extension in IEEE Trans. Wireless Commun.

